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1 Complex Analysis

1.1 Holomorphic Functions

Definition 1.1 (Holomorphic function) A function f : C → C is holomorphic at z ∈ C iff the
limit

lim
|h|→0

f(z + h)− f(z)

h

exists. f is holomorphic on U ⊆ C if f is holomorphic at every point in U .

The condition of holomorphicity is much stronger than real differentiability because h is permit-
ted to approach z through any path. Due to this, a function holomorphic at z ∈ C is also analytic
(Taylor series of f in a neighborhood of z converges to f ).

Theorem 1.2 (Cauchy-Riemann Equations) Let f = u+ iv be holomorphic on U ⊆ C. Then

ux = vy and vx = −uy

hold on U .

Proof.[Proof sketch] Since f is holomorphic, along a vertical and horizontal path we must have
the limit equal to f ′(z ∈ U) as h → 0. Vertical path is parameterized by h = it (t ∈ R) and
horizontal path by h = t (t ∈ R). Equating the limits along the two paths gives the desired result.
�
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Definition 1.3 (Orientation & Orientation-preserving) Let b1, b2 be bases of a finite-
dimensional vector space V . Then b1, b2 have the same orientation if the linear mapping
T : V → V which takes b1 to b2 has positive determinant. This is an equivalence relation
on the set of bases of V and has two equivalence classes. An orientation for V is fixing the sign
of a class as +1 and the other −1. Choosing a basis b for V fixes the orientation of V with [b]
having sign +1. A function f = u+ iv : R2 → R2 is orientation-preserving if on an open dense

set of R2 the Jacobian determinant of f ,
∣∣∣∣ux uy
vx vy

∣∣∣∣, is positive.

Theorem 1.4 Let f be a non-constant holomorphic function. Viewed as a function R2 → R2, f
is orientation-preserving.

Proof.[Proof sketch] We have det J(F ) = uxvy − vxuy. Cauchy-Riemann equations imply
det J(F ) = u2

x + v2
x. Since f is non-constant, the result follows. �

Theorem 1.5 (Rouche’s Theorem) Suppose f and g are holomorphic in an open set containing
a circle C and its interior. If

|f(z)| > |g(z)| for all z ∈ C,

then f and f + g have the same number of zeros inside C.

Theorem 1.6 (Open Mapping Theorem) A non-constant holomorphic function maps open sets
to open sets.

Proof. Let f be nonconstant and holomorphic on a region Ω ⊆ C and fix w0 ∈ f(Ω) with
f(z0) = w0 for some z0 ∈ Ω. Fix a δ > 0 such that the closed disk B(z0, δ) ⊆ Ω and for
z ∈ ∂B(z0, δ), f(z) 6= w0. Then choose ε > 0 such that |f(z)− w0)| ≥ ε for z ∈ ∂B(z0, δ).
When |w − w0| < ε, define g(z) = f(z) − w = (f(z) − w0) + (w0 − w) = F (z) + G(z);
so |F (z)| > |G(z)| on the circle ∂B(z0, δ), and thus by Rouche’s Theorem g(z) has a zero in
B(z0, δ) since F has z0 ∈ B(z0, δ) as a zero. Therefore, B(w0, ε) ⊆ f(Ω). �

Definition 1.7 (Integration along a path) For an analytic function f and path γ ⊂ C parame-
terized by z : [a, b]→ C, ∫

γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt.

Definition 1.8 (Homotopic paths) Two paths γ, ν : [a, b] → U ⊆ C with coinciding endpoints
are said to be related by a continuous deformation of paths or homotopic if there is a continous
functionH : [a, b]× [0, 1]→ U such thatH(a, t), H(b, t), (t ∈ [0, 1]), are the common endpoints
of γ, ν, and H(s, 0) = γ(s) and H(s, 1) = ν(s), (s ∈ [a, b]).
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Theorem 1.9 (Continuous deformation preserves intergration) Suppose
γ, ν : [a, b] → U ⊆ C are homotopic, with U is open and connected. Then for any
holomorphic function f on U , we have∫

γ

f(z) dz =

∫
ν

f(z) dz.

Proof. Let H(s, t) be a continuous deformation of γ into ν. Since H(s, t) is continuous on the
compact [a, b] × [0, 1], the image of H , say K, is compact. So, there must exist ε > 0 such that
every disk of radius 3ε centered at any point in K is contained in U ⊇ K (argue by contradiction
and use that every sequence in K contains a subsequence that converges to a point in K and that
U c is closed). By the uniform continuity of H , choose a δ > 0 such that

sup
t∈[a,b]

|H(s1, t)−H(s2, t)| < ε whenever |s1 − s2| < δ.

Fix s1, s2 with |s1 − s2| < δ. Choose discs {D0, . . . , Dn} of radius 2ε, and consecutive
points {z0, . . . , zn+1} on H(s1) and {w0, . . . , wn+1} on H(s2) such that the discs form a cov-
ering for H(s1) and H(s2), and zi, zi+1, wi, wi+1 ∈ Di. Also, z0 = w0 = H(s1, 0) and
zn+1 = wn+1 = H(s1, 1). Since a holomorphic function has an anitderivative/primitive on
an open disk, we can also let Fi denote the primitive of f on Di. On Di∩Di+1, Fi and Fi+1 must
differ by a constant, and so

Fi+1(zi+1)− Fi(zi+1) = Fi+1(wi+1)− Fi(wi+1).

Thus, ∫
H(s1)

f(z) dz −
∫
H(s2)

f(z) dz =
n∑
i=1

[Fi(zi+1)− Fi(zi)] +
n∑
i=1

[Fi(wi+1)− Fi(wi)]

= Fn(zn+1)− Fn(wn+1)− (F0(z0)− F0(w0)).

Since w0 = z0 and zn+1 = wn+1, we have∫
H(s1)

f(z) dz =

∫
H(s2)

f(z) dz.

Dividing [0, 1] into subintervals of length less than δ, by a finite applications of the above argu-
ment we can conclude the desired result. �

Theorem 1.10 (Existence of primitives) Any holomorphic function in a simply connected do-
main has a primitive.

Proof. Stein Shakarchi pp. 96. �
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Definition 1.11 (Simply connected region) A simply connected region is an open set in which
any two paths with the same endpoints are homotopic.

Corollary 1.11.1 If f is holomorphic in a simply connected region Ω, then∫
γ

f(z) dz = 0,

for any closed path γ ⊆ Ω.

Proof. Since f has a primitive in Ω by Theorem 1.10, and γ has is a closed path, the result
follows. �

Theorem 1.12 (Cauchy’s Integral Formula) Let γ be a small loop around z ∈ C and f(z) a
holomorphic function in a neighborhood U of γ. Then

f(z) =
1

2πi

∮
γ

f(w)

w − z
dw.

Corollary 1.12.1 (Holomorphic functions are analytic) Suppose f is holomorphic in an open
set Ω. If D is a disk centered at z0 and whose closure is contained in Ω, then f has a power
series expansion at z0

f(z) =
∞∑
n=0

an(z − z0)n,

for all z ∈ D, and the coefficients are given by

an =
1

2πi

∮
C

f(w) dw

(w − z0)n+1
.

Proof. Since z ∈ D is fixed and w ∈ C, we have∣∣∣∣ z − z0

w − z0

∣∣∣∣ < 1,

and so
1

1− z−z0
w−z0

=
∞∑
n=0

(
z − z0

w − z0

)n,

with uniform convergence guaranteed for w ∈ C. Thus,

f(z) =
1

2πi

∮
C

f(w)

w − z0

· 1

1− z−z0
w−z0

dw

=
1

2πi

∮
C

f(w)

w − z0

∞∑
n=0

(
z − z0

w − z0

)n dw

=
∞∑
n=0

(
1

2πi

∮
C

f(w) dw

(w − z0)n+1

)
(z − z0)n.
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Definition 1.13 (Pole) A complex function f has a pole of order n ∈ Z+ at z0 ∈ C if
(z − z0)nf(z) is holomorphic at z0 but (z − z0)n−1f(z) is not.

Definition 1.14 (Residue) Let f have a pole of order n at the point z0 ∈ C. Then the residue of
f at z0 is the k = −1 coefficient in the Laurent expansion of f at z0.

Theorem 1.15 (Inverse Function Theorem) Let f : U → C be a holomorphic function and
z0 ∈ U such that f ′(z0 6= 0). Then there exists a neighborhood V of f(z0) and a holomorphic
function g : V → C such that z0 ∈ g(V ) and for every z ∈ g(V ), g(f(z)) = z.

Proof. �

1.2 k-th Roots

The function f : C → C given by z 7→ zk has k elements in the preimage at every point other
than 0 in C. Since f ′(z) = kzk−1, the Inverse Function theorem implies that there exists a
holomorphic function f−1

z0
at every z0 6= 0 such that f−1

0 is the local inverse of f near z0. This
function f−1

z0
is called a branch of the k-th root function g(z) = z1/k. But traversing a small

circle around 0 shows that a continuous inverse cannot be constructed for even C \ {0}.

Riemann’s method to fix this was to consider the graph of the k-th power function:

Γk = {(z, w) ∈ C2 | w = zk},

from which a local branch can be chosen using the first coordinate projection
π1 : Γk \ {(0, 0)} → C, (z, w) 7→ z. This is called the Riemann Surface of the k-th root.

2 Manifolds

2.1 Basic Defintions

Definition 2.1 (Smooth function) A function f = (f1, . . . , fn) : Rm → Rn is smooth if all
partial derivatives ∂kfi/∂xi1∂xi2 . . . ∂xik exist.

Definition 2.2 (Smooth Manifold) A Hausdorff topological space X is called a smooth mani-
fold iff

1. For all x ∈ X there exists a (open) neighborhood Ux ⊆ X of x and a homeomorphism
ϕX : Ux → Vx, where VX ⊆ Rn is open.
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2. For any Ux, Uy such that Ux ∩ Uy 6= ∅, the transition function

Ty,x : ϕy ◦ ϕ−1
x : ϕx(Ux ∩ Uy)→ ϕy(Ux ∩ Uy)

is smooth. In this case ϕx and ϕy are said to be compatible.

The pair (Ux, ϕx) is a called a local chart and ϕX a local coordinate function. A collection
{(Uα, ϕα)}α of local charts that cover X and having smooth transition functions is called an
atlas for X .

Definition 2.3 (Compatible atlas) Two atlases A = {(Uα, ϕα)}α and B = {(Uβ, ϕβ)}β for
a smooth manifold X are said to be compatible if A ∪ B forms an atlas for X: whenever
Uα ∩ Uβ 6= ∅, the transition functions ϕα ◦ ϕ−1

β and ϕβ ◦ ϕ−1
α are smooth.

Compatibility is an equivalence relation on the set of atlases on a smooth manifold X , and an
equivalence class of compatible atlases for X is a smooth differentiable structure on X .

Example 2.4 The unit circle S1 ⊂ R2 can be a smooth manifold of dimension 1 by equipping it
with the topology induced by R2 (making it Hausdorff) and by letting the coordinate domains be

Ux+ = {(x, y) ∈ S1 | x > 0}, Ux− = {(x, y) ∈ S1 | x < 0}, Uy+ = {(x, y) ∈ S1 | y > 0}, and Uy− = {(x, y) ∈ S1 | y < 0}.

The coordinate functions can be defined as the projections:

ϕx± : Ux± → (−1, 1)[(x, y) 7→ y] and ϕy± : Uy± → (−1, 1)[(x, y) 7→ x].

2.2 Projective Spaces

Definition 2.5 (Points of Pn(R)) The set of points of Pn(R) are the set of equivalence classes
under the relation∼ on Rn+1\{~0} given by x ∼ y iff x = λy for some λ ∈ R\{0}. Equivalently,
they are the set of lines l in Rn+1 through the origin.

Given l ∈ Pn(R) and (x0, . . . , xn) ∈ l, we denote

l = [x0 : x1 : · · · : xn].

Definition 2.6 (Topology of Pn(Rn)) Let R∗ = R \ {0} act on Rn+1 via component-wise mul-
tiplication. Then, let Pn(R) have the quotient topology given by

Pn(R) = (Rn+1 \ {~0})/R∗.

In other words, letting π : Rn+1 → Pn(R) be the projection (x0, . . . , xn) 7→ [x0 : x1 : · · · : xn],
U ⊆ Pn(R) is open iff π−1(U) is open in Rn+1 \ {0}.
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Definition 2.7 (Manifold structure of Pn(R)) Denoting points of Pn(R) by
[X0 : X2 : · · · : Xn], the coordinate domains are defined by

UXi
= {[X0 : · · · : Xn] ∈ P n(R) | Xi 6= 0},

and coordinate functions ϕXi
: UXi

→ Rn by

ϕXi
([X0 : · · · : Xn]) = (X0/Xi, . . . , Xi−1/Xi, Xi+1/Xi, . . . , Xn/Xi),

for i = 0, . . . , n.

2.3 Compact Surfaces

Definition 2.8 (Surface) A surface is a manifold of real dimension 2.

Definition 2.9 (Connected Sum) The connected sum S1#S2 of two connected surfaces S1 and
S2 is the surface obtained by removing an open disk from each of the surfaces and identifying
the resulting boundaries via a homeomorphism.

The proof that the connected sum S1#S2 is well-defined is non-trivial and requires application
of the Annulus Theorem.

Theorem 2.10 (Classification of Compact Surfaces) Any connected, compact surface is
homeomorphic to exactly one surface in the following list, with g,m ∈ Z+:

1. Two-sphere S2,

2. T#g = T# . . .#T , the connected sum of g tori,

3. P2(R)#m = P2(R)# . . .#P2(R), the connected sum of m projective planes.

Again the proof is non-trivial and makes use of the topological invariants orientability and Euler
characteristic.

Definition 2.11 (Identification Polygon) A set A of n letters is called an alphabet and
A ∪ A = A ∪ {x | x ∈ A} is called a doubled alphabet. A pair x, x, for x ∈ A, is called
a pair of twin letters. An identification polygon of 2n sides is a word w constructed using 2n
letters from a doubled alphabet such that exactly two letters (with repetition allowed) from each
twin pair appear. This word is used to label the edges of a regular 2n-gon.

An identification polygon w can be used to give a compact surface by identifying the two sides
labelled by members of a twin pair via a homeomorphism, reversing orientation if the letters are
same and preserving orientation otherwise.

Definition 2.12 (Good graph/Triangulation) A triangulation on a surface S is a graph Γ on S
such that
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1. S \ Γ is homeomorphic to a disjoint union of open disks.

2. Wherever two edges cross there is a vertex.

3. No edge ends without a vertex.

Definition 2.13 (Euler characteristic) For any good graph Γ on a surface S, the Euler charac-
teristic of Γ is

χ(S) = |VΓ| − |EΓ|+ |FΓ| ,

where VΓ, EΓ, FΓ are the vertices, edges, and faces of Γ.

χ(S) is independent of the choice of good graph Γ. For example, χ(R2) = 2 (Euler’s formula)
and χ(S2) = 2.

Definition 2.14 (Orientable Surface) A surface S is orientable if it admits an atlas such that all
transition functions are orientation-preserving and such an atlas is called a positive atlas for S.

The Möbius strip is non-orientable while the sphere, the torus, and all connected sums of tori are
orientable surfaces.

Theorem 2.15 (Implicit Function Theorem) Let F : Rn → Rm be a smooth function, and
x ∈ Rn such that the differential dF (x) is a surjective linear function. Say f(x) = a. Then there
exist

1. an open neighborhood Vx ⊆ Rn of x,

2. an open set Ux ⊆ Rn−m,

3. fx : Ux → Rm a smooth function

such that
Γfx = F−1(a) ∩ Vx,

where Γf is the graph of f .

Definition 2.16 (Regular value) Let F : Rn → Rm br a smooth function. A point a ∈ Rm is
called a regular value for F , if for every x such that f(x) = a, the differential df(x) is a surjective
linear function.

Theorem 2.17 (Manifolds as level sets) Let F : Rn → Rm be a smooth function and a ∈ Rm a
regular value for F . Then F−1(a) is a smooth manifold.
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3 Introduction to Riemann Surfaces

3.1 Definitions

Definition 3.1 (Riemann Surface) A Riemann Surface is a second-countable complex analytic
connected manifold of dimension 1.

Thus, the transition functions of an atlas on a Riemann Surface are required to be holomorphic
and the local coordinate functions map to C. Since holomorphic functions preserve orientation,
every atlas is positive and so a Riemann Surface is orientable.

Definition 3.2 (Sub-chart) Let φ : U → V be a complex chart on a topological space X .
Suppose U ′ ⊆ U is an open subset of U . Then φ |U ′ : U1 → φ(U1) is a complex chart on X and
is called a sub-chart of φ.

Lemma 3.3 Let T be a transition function between two compatible charts. Then the derivative
T ′ is never zero on the domain of T .

Proof. Since T is bijective, we can consider S = T−1 on the domain of T . So, S(T (w)) = w
on the domain of T . Because T is holomorphic, we can differentiate this equation to get
S ′(T (w))T ′(w) = 1, which implies T ′(w) 6= 0 on the domain of T . �

An immediate consequence of this is that the second coefficient of the Taylor series expansion
of T on its domain must be nonzero.

Definition 3.4 (Complex structure) A complex structure on X is a maximal complex atlas on
X , or equivalently, an equivalence class of complex atlases on X .

Example 3.5 (Riemann Sphere) The two-sphere S2 ⊆ R3 along with the two charts of stereo-
graphic projection onto the complex plance from the north pole and south pole give an atlas for
S2, which makes S2 into a Riemann surface called the Riemann Sphere, which is also compact.

Definition 3.6 (Genus of Compact Riemann surface) Since P2(R)#m,m ≥ 1, is non-
orientable, by classification of compact surfaces, every compact Riemann surface is homeo-
morphic to a g-holed torus T#g, g ≥ 0, and g is called the genus of the Riemann surface.

The Riemann surface has genus 0.

3.2 Examples of Riemann surfaces

Example 3.7 (Complex Projective Line) Defined analogously as P1(R), P1(C) is the set of 1-
dimensional linear subspaces of C2.
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Example 3.8 (Complex Tori) Let ω1, ω2 ∈ C be linearly independent over R and let L be the
lattice

L = Zω1 + Zω2.

Considering L as a subgroup of the additive group C, let X = C/L, and let π : C → X be
the canonical projection. Put the quotient topology C/π on X . Fixing z0 ∈ C, choose ε > 0
such that 2ε < |ω| for all ω ∈ L. Then, let the coordinate map φz0 : π(B(z0, ε)) → B(z0, ε)
be the inverse of the map π |B(z0,ε). This construction ensures ϕz0 is a homeomorphism. Details
of showing charts are compatible is in Miranda pp. 9. The construction is homeomorphic to a
simple torus by considering X as the image of Pz0 under π |Pz0

, where z0 ∈ C is arbitrary and

Pz0 = {z0 + λ1ω1 + λ2ω2 : λi ∈ [0, 1]}.

Example 3.9 (Graphs of Holomorphic functions) Let V ⊆ C be connected and let g be holo-
morphic on V . Then, the graph of g

X = {(z, g(z)) : z ∈ V },

can be made into a Riemann surface simply by letting the global coordinate function be projection
in the first coordinate ((z, w) 7→ z). The fact that g is holomorphic is used in proving that the
projection is continuous (in order to show it is homeomorphic).

We can extend this construction of treating graphs as Riemann surfaces by looking at “sufficiently
nice” functions locally as graphs of holomorphic functions.

Theorem 3.10 (Complex version of Implicit Function theorem) Let f(z, w) : C[z, w] be a
polynomial, and let X be its zero locus. Let p = (z0, w0) ∈ X . Suppose ∂f

∂w
(p) 6= 0. Then,

there exists a function g(z) holomorphic in a neighborhood of z0 such that near p, X is equal to
the graph of g(z). Further, g′ = −∂f

∂z
/ ∂f
∂w

.

Example 3.11 (Smooth affine plane curves) An affine plane curve is the zero locus of a poly-
nomial f(z, w) ∈ C[z, w]. A polynomial f(z, w) is nonsingular at a root p if either ∂f

∂w
(p) or

∂f
∂z

(p) is nonzero. An affine plane curve is called smooth/nonsingular if f is nonsingular at each
of the points on the curve.

Using the Implicit Function theorem, we can locally treat a smooth affine plane curve X as a
graph of a holomorphic function and repeat the construction of the previous example to get an
atlas for X . The only problem is ensuring X is connected, which in particular holds if f(z, w) is
an irreducible polynomial (nontrivial fact, uses algebraic geometry). Also, if X is not necessary
smooth, we can only look at its smooth part, i.e., ignore the singular points, to get a Riemann
surface (assuming f is irreducible). Since the zero locus is not bounded, no affine plane curve is
compact.

Example 3.12 (Smooth projective plane curve) Let F (x, y, z) be a homogeneous polynomial.
Then, the zero locus of F (x, y, z) in P2(C) is well-defined:

X = {[x : y : z] ∈ P2(C) : F (x, y, z) = 0}.
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Note that with the coordinate patches {Uxi}xi defined like for real projective plane, we have

X0 = X ∩ Ux ∼= {(a, b) ∈ C2 : F (1, a, b) = 0},

which is the affine plane curve for f(a, b) = F (a, b, 1) (when transported to C2). So X is called
the projective plane curve for F and we can make this into a Riemann surface by imposing some
additional non-singularity conditions on F . A homogeneous polynomial F (x, y, z) is nonsingu-
lar if there are no common solutions to the system

F =
∂F

∂x
=
∂F

∂y
=
∂F

∂z
= 0

in P2(C).

For a homogeneous polynomial F (x1, . . . , xn) of degree d, we also have the Euler formula

F =
1

d

∑
i

xi
∂F

∂xi
.

Lemma 3.13 Suppose F (x, y, z) is a homogeneous polynomial of degree d. Then F is nonsin-
gular iff each Xi is a smooth affine plane curve in C2.

Proof. Suppose F is nonsingular and one of the X ′is, say X0, is not smooth. Let
f(z, w) = F (1, z, w). Then, there exists a common solution (z0, w0) ∈ C2 satisfying

f =
∂f

∂z
=
∂f

∂w
= 0.

So, F [1 : z0 : w0] = f(z0, w0) = 0, and similarly ∂F
∂y

= 0 = ∂F
∂z

. By Euler’s formula, we have

∂F

∂x
= dF [1 : z0 : w0]− z0

∂F

∂y
[1 : z0 : w0]− w0

∂F

∂z
[1 : z0 : w0] = 0,

contradicting nonsingularity of F . Similarly for the converse. �

By algebraic geometry, a homogeneous nonsingular polynomial is irreducible, allowing us to
use the construction of the smooth affine plane curves locally on each of the coordinate patches
Uxi to make a homogeneous nonsingular projective plane curve into a Riemann surface. More-
over, since P2 is compact and the zero locus is a closed subset, we get a compact Riemann
surface.

Theorem 3.14 Let F (x, y, z) be a nonsingular homogeneous polynomial. Then the projective
plane curve X , which is the zero locus of F in P2(C), is a compact Riemann surface.
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3.3 Functions and Maps on Riemann Surfaces

Let X be a Riemann surface, let p ∈ X , and let f be a complex valued function.

Definition 3.15 (Holomorphic function) f is holomorphic if there exists a chart (φ, U), with
p ∈ U , such that f ◦ φ−1 is holomorphic at φ(p).

In fact, if f is holomorphic w.r.t. to one chart (φ, U) at p, then f is also holomorphic w.r.t any
other chart (φ′, U ′) containing p:

f ◦ φ′−1 = (f ◦ φ−1) ◦ (φ ◦ φ′−1),

which is holomorphic being the composition of holomorphic maps.

Example 3.16 Consider P1(C). Then if g, h are homgeneous polynomials with the same degree
and h(z0, w0) 6= 0, then F ([z, w]) = g(z, w)/h(z, w) is a holomorphic function in a neighbor-
hood of [z0, w0].

Example 3.17 Consider a projective plane curve X . Then, if p = [x0, y0, z0] with x0 6= 0, then
any polynomial function g(y/x, z/x) (restricted to X) is holomorphic at p. More generally, any
ratio of homogeneous polynomials in x, y, z (with nonzero denominator at p) is holomorphic at
p.

Definition 3.18 For W ⊆ X an open set, let OX(W ) denote the set of holomorphic functions
on W .

The definitions of removable singularity, pole, and essential singularity on a Riemann surface are
completely analogous to the definition of holomorphic function on a Riemann surface. We can
determine the kind of singularity f has at a point p by examining its behaviour near p:

• If |f(x)| is bounded in a neighborhood of p, then there is a removable singularity at p
which can be resolved by letting f(x) = limx→p f(x).

• If |f(x)| approaches∞ as x→ p, then p is a pole.

• If |f(x)| has no limit as x→ p, then p is an essential singularity.

Definition 3.19 (Meromorphic function) A function f is meromorphic at p ∈ X if it is either
holomorphic, has a removable singularity, or has a pole, at p.

Example 3.20 (Elliptic function) Let C/L be a complex torus with quotient map
π : C → C/L. Let f be a meromorphic function on C/L. The function g : C → C
given by g = f ◦ π is L−periodic: g(z + ω) = g(z) for any z ∈ C and ω ∈ L. Clearly there
is a 1-1 correspondence between L−periodic functions on C and functions on C. Further, a
meromorphic L−periodic function is called an elliptic function and there is a bijection between
elliptic functions on C and meromorphic functions on C/L.
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Definition 3.21 For W ⊆ X an open set, letMX(W ) denote the set of meromorphic functions
on W .

Let f be holomorphic on a punctured neighborhood of p ∈ X , with φ : U → V a chart containing
p. So, fφ−1 is holomorphic in a punctured neighborhood of z0 = φ(p), so that we may expand
f ◦ φ−1 in a Laurent series near z0 (with z as the local coordinate in C):

f(φ−1(z)) =
∞∑

n=−∞

cn(z − z0)n.

This is the Laurent series for f about p w.r.t φ (or z). The Laurent coefficients depend on the
choice of the chart φ.

Lemma 3.22 The Laurent series of f about p (w.r.t some chart) has

• no negative powers iff f has a removable singularity at p,

• finitely many negative powers iff f has a pole at p,

• infinitely many negative powers iff f has an essential singularity at p.

Definition 3.23 (Order of a meromorphic function at a point) Let f be meromorphic at p
with Laurent series (w.r.t some local variable z)

∑∞
n=−∞ an(z − z0)n, then the order of f at

p is
ordp(f) = min{n : an 6= 0}.

It has to be checked that ordp(f) doesn’t depend on the choice of chart, which can done by using
Lemma 3.3 and composing the power series for the holomorphic transition function. Many of
the analogues of the complex analysis theorems carry over.

Theorem 3.24 (Discreteness of poles and zeroes) Let f be a meromorphic function defined in
a connected open set W of a Riemann surface X . If X is not identically zero, then the the poles
and zeroes of f are a discrete subset of W .

Since there can be no limit points in a discrete closed subset, we have:

Lemma 3.25 Let f be a meromorphic function on a compact Riemann surface, which is not
idenitcally zero. Then f has a finite number of zeroes and poles.

Theorem 3.26 (Identity theorem) Let f and g be meromorphic on a connected open set W on
Riemann surface X . Suppose f = g on a subset S ⊂ W containing a limit point of W . Then
f = g on W .

Theorem 3.27 (Maximum Modulus theorem) Let f be meromorphic on a connected open set
W on Riemann surface X . Suppose there is a point p ∈ W such that |f(x)| ≤ |f(p)| for all
x ∈ W . Then, f is constant on W .
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Proof. Suppose f is nonconstant on W . Then, f is an open mapping (Open Mapping theorem)
and a small disk centered at p is mapped to a disk containing f(p), which would imply existence
of z such that |f(z)| > |f(p)|. �

Theorem 3.27 holds for harmonic functions too.

Theorem 3.28 (Analogue of Liouville’s theorem) If f is holomorphic on a compact Riemann
surface X , then f is constant.

Proof. Since |f | is continuous and X is compact, |f | achieves a maximum value. Thus, since X
is also connected, by Maximum Modulus theorem, f must be constant on X . �

3.4 Examples of Meromorphic Functions

Example 3.29 (On Riemann Sphere C∞) Rational functions (ratio of two polynomials)
p(z)/q(z) are meromorphic on C∞. The converse also holds:

Theorem 3.30 Any meromorphic function on the Riemann Sphere is a rational function.

Proof. Let f be a meromorphic function on C∞ with poles and zeroes {λi} and ei = ordλi(f) in
C. Since C∞ is compact, f has finite poles and zeroes. Now, let

r(z) =
∏
i

(z − λi)ei ,

be the rational function which has the same poles and zeroes as f in C. Then, consider the
meromorphic function g(z) = f/r(z). g(z) has no poles and zeroes in C and so (possibly after
resolving removable singularities) is holomorphic on all of C. Thus, g(z) has a convergent Taylor
series:

g(z) =
∞∑
n=0

anz
n.

But, g(z) is also meromorphic at∞ in C∞, and so

g(1/z) =
∞∑
n=0

anz
−n,

is meromorphic at z = 0. For that to be true, the order of g at 0 needs to be finite, so that
g(z) has finitely many terms and is thus a polynomial. If g(z) was nonconstant, then it would
have zero(es) in C, which would be a contradiction. So, f/r is constant and thus f is a rational
function. �
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Corollary 3.30.1 Let f be any meromorphic function on C∞. Then∑
p∈C∞

ordp(f) = 0.

Example 3.31 (On Projective Line) Lemma 3.32 If p(z, w) and q(z, w) are homogeneous of
the same degree, with qnot = 0, then r(z, w) = p(z, w)/q(z, w) descends to a meromorphic
function on P1(C).

Theorem 3.33 Every meromorphic function on P1(C) is a ratio of homogeneous polynomials in
z, w of the same degree.

Proof. Let f be meromorphic on P1. Consider

r(z, w) = wn
∏
i

(biz − aiw)ei ,

where {[ai : bi]} are the poles and zeros of f and ord[ai:bi](f) = ei and n is chosen to homogenize
r, n = −

∑
i ei. Consider g = f/r. Now, g has no poles or zeroes, except possibly at [1 : 0].

Argue this can’t be a pole and hence g is holomorphic on all of (compact) P1, so that by (analogue
of) Liouville’s theorem, g is constant and we’re done. �

Corollary 3.33.1 Let f be any meromorphic function on P1. Then∑
p∈P1

ordp(f) = 0.

Example 3.34 (On Complex Torus) Fix τ in upper half-plane (Im(τ) > 0), and consider
L = Z + τZ. A theta function is

θ(z) =
∞∑

n=−∞

eπi[n
2τ+2nz].

θ(z) is analytic on all of C. The translate of θ(z) is

θ(x)(z) = θ(z − 1/2− τ/2− x).

Fix a positive integer d and choose any two sets of d complex numbers {xi} and {yj} such
that

∑
i xi −

∑
j yj is an integer. Then the ratio of translated theta functions

R(z) =

∏
i θ

(xi)(z)∏
j θ

(yj)(z)

is a meromorphic L-periodic function on C, and so descends to a meromorphic function on C/L.
The converse is also true: any meromorphic function on a complex torus is a ratio of translated
theta functions.
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Example 3.35 (On Smooth Affine Plane Curves) Let f(x, y) = 0 define a smooth affine plane
curve X . Any ratio of two polynomials is meromorphic on X as long as the denominator is not
zero everywhere onX . This will definitely be the case if f divides the denominator and Hilbert’s
Nullstellensatz gurantees this is the only case.

Theorem 3.36 (Hilbert’s Nullstellensatz) Suppose h is a polynomial vanishing everywhere an
irreducible polynomial f vanishes. Then f divides h.

A similar construction works for smooth projective plane curves.

3.5 Holomorphic Maps between Riemann Surfaces

Let X and Y be Riemann surfaces.

Definition 3.37 A mapping F : X → Y is said to be holomoprhic at p if there exist charts
φ1 : U1 → V1 on X with p ∈ U and φ2 : U2 → V2 on Y with F (p) ∈ U2 such that φ2 ◦ F ◦ φ−1

1

is holomorphic at φ1(p).

Again, this definition can be shown to be independent of the choice of charts on X and Y .

Lemma 3.38 Let F : X → Y be a holomorphic map, then

1. F is continuous and C∞.

2. IfG : Y → Z, Z a Riemann surface, is holomorphic, thenG◦F : X → Z is holomorphic.

3. If g : W ⊆ Y → C (W open) is a holomorphic function, then g ◦ F is a holomorphic
function on F−1(W ). In other words, F induces a C−algebra homomorphism:

F ∗ : OY (W )→ OX(F−1(W )),

given by F ∗(g) = g ◦ F .

4. If g : W ⊆ Y → C (W open) is a mneromorphic function, then g ◦ F is a meromorphic
function on F−1(W ) provided F (X) is not a subset of the set of poles of g. In other words,
F induces a C−algebra homomorphism:

F ∗ :MY (W )→MX(F−1(W )),

given by F ∗(g) = g ◦ F .

Definition 3.39 (Isomorphism) An isomorphism between Riemann surfaces X and Y is a bi-
jective holomorphic map F : X → Y such that F−1 : Y → X is holomorphic. An isomorphism
X → X is an automorphism.

We don’t need to check holomorphicity of the inverse if F is 1-1:
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Lemma 3.40 Let F : X → Y be an injective holomorphic map between Riemann surfaces.
Then F is an isomorphism between X and its image F (X).

Many of the theorems for holomorphic functions on Riemann surfaces carry over.

Theorem 3.41 (Open Mapping theorem) Let F : X → Y be a nonconstant holomorphic map.
Then F is an open mapping.

Theorem 3.42 (Identity theorem) Let F and G be two holomorphic maps between X and Y
such that X = Y on a subset of X containing a limit point in X , then F = G on all of X .

Theorem 3.43 Let X be a compact Riemann surface, and let F : X → Y be a nonconstant
holomorphic function. Then F is onto and Y is compact.

Proof. SinceX is open and F is nonconstant holomorphic, by the Open Mapping theorem, F (X)
is open. Also, since X is compact, F (X) is compact and since Y is Hausdorff, must be closed.
Thus, F (X) is closed and open, and since Y is connected, F (X) must be Y . �

Theorem 3.44 Let F : X → Y be nonconstant holomorphic. Then for every y ∈ Y , the
preimage F−1(y) is a discrete subset of X . In particular, if X and Y are compact, then F−1(y)
is a nonempty finite set.

Since any meromorphic function on a Riemann surface can be viewed as a holomorphic map
to the Riemann sphere C∞ (by letting f(p) =∞ at poles p), we have bijection between holomor-
phic maps F : X → C∞ which are not identically∞ and meromorphic functions f : X → C.

3.6 Global Properties of Holomorphic Maps

Let X and Y be Riemann surfaces with F : X → Y a holomorphic map.

Theorem 3.45 (Local Normal Form) Let F be nonconstant and defined at p ∈ X . Then there
exists a unique integer m ≥ 1 such that: for every chart φ2 : U2 → V2 centered at p (i.e.,
φ2(p) = 0) there exists a chart φ1 : U1 → V1 centered at p such that φ2(F (φ−1

1 (z))) = zm.

Definition 3.46 (Multiplicity) The multiplicity of F at p ∈ X is the unique integer m ∈ Z≥1

such that there exists local coordinates near p and F (p) having the form z 7→ zm.

Lemma 3.47 Suppose z is a local coordinate for p so that z0 corresponds to p and w is a local
coordinate for F (p) with w0 corresponding to F (p). Then,

multp(F ) = 1 + ordp(dh/dz),

where h is a holomorphic function such that w = h(z) via F . Further, if
h(z) = h(z0) +

∑∞
i=m(z − z0)i with m ≥ 1 and cm 6= 0, then multp(f) = m.

17



Definition 3.48 (Ramification point) Let F be nonconstant. A point p ∈ X is a ramification
point for F if multp(F ) ≥ 2. A point y ∈ Y is a branch point for F if it is the image of a
ramification point of F .

Lemma 3.49 Let X be a smooth affine plane curve defined by f(x, y) = 0. Let π be the projec-
tion on the first coordinate. Then π is ramified at p ∈ X iff (∂f

∂y
)(p) = 0.

Let X be a smooth projective plane curve defined by a homogeneous polynomial
F (x, y, z) = 0; consider G : X → P1 defined by [x : y : z] 7→ [x, z]. Then G is ramified
at p ∈ X iff (∂F

∂y
)(p) = 0.

Lemma 3.50 Let f be a meromorphic function on a Riemann surface X , with a holomorphic
map F : X → C∞.

1. If p ∈ X is a zero of f , then multp(F ) = ordp(f).

2. If p is a pole of f , then multp(F ) = − ordp(f).

3. If p is neither a zero nor a pole of f , then multp(F ) = ordp(f − f(p)).

Theorem 3.51 Let F : X → Y be nonconstant holomorphic map between compact Riemann
surfaces. For each y ∈ Y , define dy(F ) to be sum of the multiplicities of F at the points X
mapping to y:

dy(F ) =
∑

p∈F−1(y)

multp(F ).

Then dy(F ) is constant for all y ∈ Y .

Definition 3.52 (Degree of holomorphic map) Let F : X → Y be a nonconstant holomorphic
map between compact Riemann surfaces. The degree of F deg(F ) is dy(F ).

Thus by Lemma 3.40, we get

Corollary 3.52.1 A holomorphic map between compact Riemann surfaces is an isomorphism iff
it has degree one.

Since a meromorphic function on a Riemann surface extends naturally to a holomorphic map to
C∞, if we have a compact Riemann surface with a meromorphic function having a single pole of
order 1, then by the above corollary, it must be isomorphic to the Riemann sphere.

Theorem 3.53 (#Zeroes = #Poles counted by order) Let f be a nonconstant holomorphic
function on a compact Riemann surface X . Then∑

p∈X

ordp(f) = 0.
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Proof. Let F : X → C∞ be the holomorphic map associated to f . Then by definition of degree,

deg(F ) =
∑

xi a zero of f

multxi(F ) =
∑

yj a pole of f

multyj(F ).

Thus by Lemma 3.50,
∑

xi a zero of f ordxi(f) = −
∑

yj a pole of f ordyj(f), and the result follows
(since any point that is not a pole or zero has order 0). �

Theorem 3.54 (Meromorphic functions on Complex Torus) Any meromorphic function on a
complex torus is given by a ratio of translated theta-functions.

Theorem 3.55 For a compact orientable surface without boundary with topological genus g,
the Euler characteristic is 2− 2g.

Theorem 3.56 (Hurwitz’s Formula) Let F : X → Y be a nonconstant holomorphic function
between compact Riemann surfaces. Then

2g(X)− 2 = deg(F )(2g(Y )− 2) +
∑
p∈X

[multp(F )− 1].

The Hurwitz’s formula is counting the Euler characteristic of X in two ways: one using the
topological forumula and the other by lifting a triangulation (i.e., good graph) from Y to X via
the holomorphic map F .

4 More examples of Riemann Surfaces

4.1 Lines and Conics

Lemma 4.1 Any line in P2 is nonsingular and is isomorphic to P1.

Proof. A line in P2 is given by an equation ax + by + cz = 0, where not all a, b, c are zero. So
a line has atleast one nonzero partial derivative and so is nonsingular. Suppose c 6= 0. Then,
[r : s] 7→ [r : s : −(ar + bs)/c] is an isomorphism from P1 to the line. �

Definition 4.2 (Conic) A conic is a quadratic equation of the form

F (x, y, z) = ax2 + 2bxy + 2cxz + dy2 + 2eyz + fz2 = 0,

where a, b, c, d, e, f ∈ C are not all zero. A conic may thus be represented by

F (x, y, z) =
(
x y z

)a b c
b d e
c e f

xy
z

 = V >AFV,

for a symmetric matrix AF .
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Lemma 4.3 The conic F is nonsingular iff the matrix AF is invertible.

Proof. The vector of partial derivatives of F is 2AFV , V ∈ C3. Thus, if AF is nonsingular, then
the null space of AF is trivial, and so AF is invertible. Conversely, if AF is invertible, then AF
has trivial null space and so F is nonsingular. �

Lemma 4.4 Let T be an invertible 3 × 3 matrix, let FA be the quadratic equation defined by
symmetric matrix A, and let FB be the quadratic equation defined by B = T>AT . Then the map
T that sends V 7→ TV is an isomorphism from the projective curve XB defined by FB to the
projective curve XA defined by FA.

Proof. If the point V lies on XB, then V >(T>AT )V = 0, and so (TV )>A(TV ) = 0, i.e., TV
lies on XA. Similarly T−1 maps XA to XB. It needs to be checked that T is holomorphic. �

Theorem 4.5 A complex invertible symmetric A can be factored as A = T>T , for some invert-
ible T .

Thus, we get

Corollary 4.5.1 Any smooth projective plane curve is isomorphic to the conic defined by the
identity matrix, which is x2+y2+z2 = 0. Thus any two smooth projective conics are isomorphic,
with an isomorphism T which is an invertible 3× 3 matrix.

Lemma 4.6 Any smooth projective plane conic is isomorphic to P1 and thus also has topological
genus 1.

Proof. Consider the isomorphism mapping [r : s] 7→ [r2 : rs : s2]; the inverse maps [x : y : z] to
[x : y] or [y : z] depending on whether one of x, y is nonzero or y, z is nonzero. �

4.2 Glueing Together Riemann Surfaces

Theorem 4.7 Let X and Y be Riemann surfaces. Suppose U ⊆ X and V ⊆ Y are nonempty
open sets, and there is given an isomorphism φ : U → V . Then there is a unique complex
structure on the quotient space Z = X q Y/φ such that the natural inclusions of X and Y are
holomorphic. In particular, if Z is a Hausdorff space, then it is a Riemann surface.

Proof. Consider the natural inclusion maps ιX : X ↪→ Z and ιY : Y ↪→ Z. Then for a chart
ψ : UX → ψ(UX), lift it to Z via ιX to get a chart on Z ι(UX) → ι(ψ(UX)) with map ψ ◦ ι−1

X .
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Similarly, charts from Y can be lifted to Z via ιY to get a complex structure on Z. Since X and
Y are connected, so is Z and thus it is a Riemann surface iff it is Hausdorff. �

Thus Z is said to be constructed by glueing X and Y along U and V via φ. The Riemann
sphere C∞ can be constructed by glueing two copies of C along C \ {0} via z 7→ 1/z.

Definition 4.8 (Hyperelliptic Riemann surfaces) Let h(x) be a polynomial of degree 2g+1+ε,
where ε = 0 or 1 and assume h(x) has distinct roots. Then let X be the smooth affine
plane curve given by y2 = h(x) with U ⊆ X = {(x, y) ∈ X : x 6= 0}. Let
k(z) = z2g+2h(1/z) and define Y to be the smooth affine plane curve defined by w2 = k(z),
along with V ⊆ Y = {(z, w) ∈ Y : z 6= 0}. Define φ : U → V by (x, y) 7→ (1/x, y/xg+1).
Then φ is an isomorphism, and U and V are open sets. Let Z be the Riemann surface obtained
by glueing X and Y along U and V via φ. Then we have:

Theorem 4.9 Z is a compact Riemann surface with genus g. The meromorphic function x on Z
(typo in Miranda?) extends to a holomorphic function π : Z → C∞, which has degree 2. The
branch points of π are the roots of h (and the point∞ if ε = 0).

Proof sketch. That Z is compact follows from noting that it is a union of the compact sets
{(x, y) ∈ X : ||x|| ≤ 1} and {(z, w) ∈ Y : ||z|| ≤ 1}. The map π has degree 2 because
for a point x0 ∈ π(Z) such that h(x0) 6= 0, the preimage of x has the points (x0,

√
h(x0)) and

(x0,−
√
h(x0)), each with multiplicity 1.

Z is called a hyperelliptic Riemann surface.

4.3 Complex Tori

Theorem 4.10 (Maps between Complex Tori) Let X and Y be two complex tori given by lat-
tices L and M . Then any holomorphic map F : X → Y is induced by a linear map G : C→ C
of the formG(z) = γz+a, for a constant γ such that γL ⊆M . The constant a = 0 iff F (0) = 0;
in this case F is a group homorphism. The holomorphic map F is an isomorphism iff γL = M .
The degree of F is [M : γL].

Theorem 4.11 (Automorphisms of complex tori) Let X = C/L be a complex torus. Then any
holormorphic map F : X → X is induced by multiplication by some γ ∈ C, and so is a group
homormorphism. Moreover if F is an automorphism, then either

1. L has two orthogonal generators (square lattice), with γ = i a generator for Aut0(X)
(i.e., the automorphisms fixing 0). So Aut0(X) ∼= Z/4.

2. L has two generators at an angle of π/3 (hexagonal lattice), with γ = eπ/3 a generator for
Aut0(X). So Aut0(X) ∼= Z/6.

3. L is neither square nor hexagonal, and γ = ±1, with γ = ±1. Aut0(X) ∼= Z/2.
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4.4 Groups Actions on Riemann surfaces

A group G is said to act effectively on a Riemann surface X if the kernel of its action
K = {g ∈ G : gp = p, for all p ∈ X} is trivial. Since G/K always acts effectively, we
can assume without loss of generality that G acts effectively. The stabilizer Gp of a point p is
also called the isotropy subgroup of p.

The action ofG onX is said to be continuous if for every g, the mapping p 7→ gp is a continous
map from X to itself. Similarly, the notion of a holomorphic action can be defined.

The quotient space X/G is the set of orbits with the natural quotient map π : X → X/G. We
can give this a topology by giving it the quotient topology induced by π: U ⊆ X/G is open iff
π−1(U) ⊆ X is open.

The next few theorems are really beautiful for me: a natural blend of algebra and analysis!

Theorem 4.12 Let G be a group acting on holomorphically and effectively on Riemann surface
X . Fix a point p ∈ X . If the stabilizer subgroup Gp is finite, then it is cyclic.

Proof. Fix a local coordinate z centered at p. For any g ∈ Gp, consider the Taylor series
g(z) =

∑∞
n=1 an(g)zn, in which a0 = 0 because g(p) = p. Also a1(g) 6= 0 because g being an

automorphism of X has multiplicity 1 everywhere.

Now the function a1 : GP → C× is a group homomorphism. If we can show it is 1-1, then
a1(Gp) would be finite, and since all finite subgroups of C× are cyclic, we will have the result. So,
suppose g is in the kernel of a1, i.e., g(z) = z + higher order terms; we need to show g(z) = z.
Suppose m > 2 is the first nonzero power of z in g, so that g(z) ≡ z + amz

m (mod zm+1), with
am 6= 0. Thus, by induction gk(z) ≡ z + kamz

m (mod zm+1). Since Gp is finite, g must have
finite order and so gk(z) = z for some k, implying that am = 0, a contradiction. �

Theorem 4.13 Let G be a finite group acting holomorphically and effectively on a Riemann
surface X . Then the points of X with nontrivial stabilizers are discrete.

Proof. Suppose a point p ∈ X has nontrivial stabilizer but has a sequence of points {pi} converg-
ing to it with the same property. Then, for each pi there is a nontrivial gi ∈ G fixing pi. Since G
is finite, we can pass to a subsequence {pik} which is fixed by the same element g. Then, since
pik → p and g is continuous, g(p) = p. Thus, g is the same as the identity function on the subset
{pik} ∪ {p} containing a limit point, and so by the Idenitity theorem must be the same on all of
X , contradicting that G acts effectively. �

Theorem 4.14 Let G be a finite gorup acting holomorphically and effectively on Riemann sur-
face X and fix a point p ∈ X . Then there exists an open set U ⊆ X containing p such that

1. U is invariant under the action of Gp: for every g ∈ Gp, u ∈ U , gu ∈ U .
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2. U ∩ (gU) = ∅ for every g 6∈ Gp.

3. The natural map α : U/Gp → X/G which sends an orbit in U/Gp to its larger orbit in
X/G is a homeomorphism onto an open subset of X/G.

4. No point of U except p is fixed by any nontrivial element of Gp.

Proof. Let {g1, . . . , gn} = G \ Gp. Then since X is Hausdorff, we can find disjoint neigh-
borhoods Vi and Wi of p and gip respectively. g−1

i Wi is a neighborhood of p for each i. Let
Ri = Vi ∩ (g−1

i Wi), R =
⋂
iRi, and U =

⋂
g∈Gp

gR. U satisfies the conditions. The last one
follows from the fact that points with nontrivial isotropy are discrete. �

This proposition is key to giving X/G a complex structure. For a point p with trivial isotropy,
we can define a chart in the following way. By the above proposition we can find a neighborhood
U of p which is Gp-invariant and π|U : U → W ⊆ X/G is a homeomorphism. By shrinking
U if necessary, we can assume U is the domain of a chart φ : U → V ⊆ C on X . Thus, the
composition ψ : φ ◦ π−1

|U : W → V is a chart on X/G.

If p ∈ X has nontrivial isotropy, i.e., m = |Gp| ≥ 2, then we have to do a little more work
to extract a chart on X that descends to a chart on X/G. Again, start with a neighborhood U
containing p that is Gp-invariant that is m-to-1 away from p (by point 4 of the previous thm). So
we seek a homeomorphism h satisfying

h : U → U/Gp
α−→ W

φ−→ C

This means h has to be Gp-invariant. Fix a local coordinate centered at p, say z. Let

h(z) =
∏
g∈Gp

g(z).

Since each g ∈ Gp has multiplicity 1 at p, h has multiplicity m at p. By suitably shrinking U , we
may also assume h is defined on U . Also, h is Gp-invariant since h(gz) = g(z) for any g ∈ Gp.
Thus, we get a well-defined map h : U/Gp → C that is continuous and open. Also h is injective
since the projection U → U/Gp is m-to-1 away from p and the map h having multiplicity m is
also m-to-1 away from p (also α and φ are injective).

Therefore, we can let φ be
φ = h ◦ α−1 : W → C.

These charts make X/G into a Riemann surface and the thing remaining to be checked is that
the charts defined are compatible. The only case we have to really worry about is the nonempty
intersection of the domain of two points, one which has nontrivial isotropy and the other has
trivial isotropy (we don’t have to check both having nontrivial stabilizers because we know by a
preceding theorem that such points are discrete). This is not hard to check.

By the definition of the charts on X/G, we know that multp(π) = |Gp|. So, we can also
notice that the degree of the projection map φ : X → X/G exists and is equal to |G| since, by
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the Orbit-Stabilizer theorem (or the fact the points of the same orbit have conjugate stabilizers),∑
x∈π−1(Op) multx(π) =

∑
x∈π−1(Op) |Gx| =

∑
x∈π−1(Op) |Gp| = |G|.

We also have a linearization of action:

Theorem 4.15 (Linearization of the Action) Let G be a finite group acting effectively and
holomorphically on a Riemann surface X . Fix a point p ∈ X with nontrivial isotropy of or-
der m. Let g ∈ Gp generate Gp. Then there is a local coordinate z on X centered at p such that
g(z) = λz, where λ is a primitive mth root of unity.

Proof. Fix a local coordinate w nearOp. By the normal local form, we can find a local coordinate
z near p such that w = zm. For nonzero values of w near 0, the corresponding preimages are all
off by an m-th root of unity and so form the set {e2πik/m : 0 ≤ k ≤ m − 1}. Since Gp locally
acts on X near p, these points form a Gp-orbit. Thus, g(z) = e2πik/mz for some 1 ≤ k ≤ m− 1
(k 6= 0 since Gp is assumed to be nontrivial). �

Next, we want to understand the ramification of the projection map π. Let X be a compact
Riemann surface. Suppose y ∈ X/G is a branch point of π; let the points lying above y in
X be {x1, x2, . . . , xs}. These points xi all belong to the same orbit and thus have the same
isotropy, say r. Then, by the orbit stabilizer thm we have that s = |G| /r. Thus, if π has branch
points y1, . . . , yk, with π having multiplicity ri at the points above the branch points, then by
Riemann-Hurwitz formula, we have

2g(X)− 2 = |G| (2g(X/G)− 2) +
k∑
j=1

|G|
rj

(rj − 1).

Using this we can say a lot about the possible ramification indexes given the genus of X
(Miranda pp. 80-81). We also get

Theorem 4.16 (Hurwitz’s theorem) Let G be a finite group acting effectively and holomorphi-
cally on a compact Riemann surface X with genus g ≥ 2. Then

|G| ≤ 84(g − 1).

5 Monodromy

5.1 Fundamental group

Given two paths γ1 and γ2 in a space X , we defined in Definition 1.8 what it means for two paths
to be homotopic. We can show that homotopy of paths with common endpoints is an equivalence
relation. In particular, we can look at all the homotopy classes of loops based at a fixed point
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in X and show that this set has a group structure. The operation in for this group is the product
or concatenation of paths: given two loops γ, β : [0, 1] → X based at q ∈ X , we define γ · β
as the path γ(2s) for 0 ≤ s ≤ 1/2 and β(2s − 1) for 1/2 ≤ s ≤ 1. (This product works for
more general paths with the constraint that the endpoint of γ and the start point of β coincide:
γ(1) = β(0).) Thus, without too much trouble it can be shown that homotopy classes of loops
based at q form a group denoted π1(X, q) called the fundamental group.

We also have the useful van Kampen theorem that, for instance, implies that the fundamental
group of a point with m loops based at it is the free group of m generators.

5.2 Covering Space

A covering space of a space V is a continuous surjective map F : U → V such that for each
v ∈ V there exists a neighborhood W ⊆ V of v so that

F−1(W ) =
⊔

u∈F−1(v)

Nu,

where Nu ⊆ U is a neighborhood of u for which F : Nu → W is a homeomorphism.

In particular, if F0 : U0 → V is a covering space and U0 is simply connected, then this is called
a universal covering space of V . The existence of a universal covering space is guaranteed. The
universal covering of V is unique upto isomorphism and its universal property is any covering
space F : U → V factors through F0.

Definition 5.1 (Action of π1 on universal covering) Given a space V and a fixed base-point
q ∈ V , we define an action of the fundamental group at q on the universal covering F : U0 → V
in the following way:

q
γ

u

F (u)

α

F (α)

γ̃

[γ]u

−F̃ (α) U0

F

V
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The action of π1 collapses the fiber above each point in V to a single point, so that the orbit space
U0/π1(X, q) is homeomorphic to V . We can also act on the universal covering by a subgroup
H ≤ π1(X, q), in which case we can show that U0/H is a covering space of V . Furthermore,
every covering space of V arises in this way.

5.3 Monodromy representation of a finite degree covering

We start with a covering space F : U → V and suppose that F is of finite degree d, i.e., U is a
d-sheeted covering of V and U is connected.

Fix a base-point q ∈ V and a loop γ based at q. Then lift γ to U : suppose the fiber above
q is {x1, . . . , xd}. So for each xi there is a unique lift γ̃i such that γ̃i(0) = xi. Now for each
i, the endpoint γ̃i(1) = xj for some 1 ≤ j ≤ d. By the uniqueness of lifts for coverings,
we can show the association of endpoints i 7→ j is a permutation of {1, . . . , d}. Thus, we
have a homomorphism ρ : π1(V, q) → Sd and this is called the monodromy representation of
F : U → V .

6 Hurwitz Numbers

6.1 Riemann’s Existence theorem

Y is a compact Riemann surface. The motivating question is to understand the different holo-
morphic maps to Y when branch points in Y specified. Naturally, we have to talk about when
two holomorphic maps to Y are considered equivalent.

Definition 6.1 (Isomorphism of Holomorphic maps) Let f : X → Y and g : X̃ → Y be
holomorphic maps. Then f and g are called isomorphic if there is an isomorphism φ : X → X̃
such that f = g ◦ φ, and φ is called an isomorphism of f . When X = X̃ , φ is called an
automorphism of f and the group of automorphisms of f is Aut(f).

To talk about the combinatorics of ramification numbers, we keep in mind the notion of a par-
tition: a partition of a positive integer d is an unordered k-tuple (a1, . . . , ak) such that

∑
i ai = d;

if ai = aj for some i 6= j, we still think of them as distinct elements of the partition. This is so
that we can talk about functions from a partition; an automorphism of a partition is a bijection
that only permutes among numerically equal elements. The size of a partition is d and the length
is the number of elements in the tuple.

Let f : X → Y be holomorphic and fix a y ∈ Y . Then, if f−1(y) = {x1, . . . , xk}, for each i
there is a local normal form near xi such that w and zi are local coordinates near y and xi, then
w = zrii (i.e., ri is the multiplicity of xi in f ). The tuple (r1, r2, . . . , rk) is called the ramification
profile of f at y. If d is the degree of the f , then the ramification profile is a partition of d. When
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k = d, so that ri = 1 for all i, f is unramified at y, when k = 1, f is fully ramified at y, and if
k = d− 1 (so (2, 1, . . . , 1)), f is simply ramified at y.

Definition 6.2 (Hurwitz Numbers) Let Y be a compact Riemann surface with genus g. For a
positive integer d, let λ1, . . . , λn be parititions of d. Then,

H
h

d→g
(λ1, . . . , λn) =

∑
[f ]

1

|Aut(f)|
,

where the sum is over all isomorphism classes of maps f such that

• f : X → Y is a holomorphic map of degree d from a compact (connected) Riemann
surface X of genus h,

• The branch points of Y in f are {b1, . . . , bn} such that bi has ramification profile λi.

Any map f from the above definition is called a Hurwitz cover for the parameters
g, h, d, λ1, . . . , λn.

For example H
0

d→0
is 1/d since every map between Riemann spheres can be shown to be iso-

morphic to the power map p(x) = xd and Aut(p) ∼= µd, the multiplicative group of dth roots of
unity.

Since unlike Miranda, Cavalieri and Miles don’t require Riemann surfaces to be connected,
they also consider the similarly defined notion of a Hurwitz cover arising from a disconnected
Riemann surface, by letting the genus of such a surface being determined by its Euler character-
istic so that is true χ(X) = 2− 2g. Therefore, if a disconnected Riemann surface X is the union
of n connected Riemann surface with genera gi, then because χ is additive for unions of disjoint
surfaces,

g(X) = g1 + · · ·+ gn + 1− n.

They denote the Hurwitz number for covers coming from a disconnected Riemann surface by
H•
h

d→g
(λ1, . . . , λn).

We already know that holomorphic maps between Riemann surfaces are ramified coverings,
giving true coverings away from ramification points and branch points. The Riemann Existence
theorem says the converse it also true: every ramified covering of a compact Riemann surface is
a holomorphic map.

Theorem 6.3 (Riemann’s Existence theorem) Suppose Y is a compact Riemann surface and
f̃ : X̃ → Y \ {b1, . . . , bn} is a covering from a topological surface X̃ . Then X̃ can be uniquely
extended to a compact Riemann surface such that f̃ extends to a holomorphic map f : X → Y .

Proof. [Sketch] The idea is to make maximum use of the assumption that f̃ : X̃ → Y is
a covering. For each branch point bi, we choose a chart ϕi centered at bi, and take Vi to be
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the open neighborhood ϕ−1
i {|w| < 1} of bi. Then, since f̃ is a covering of say degree m,

f̃−1(Vi \ {bi}) will be the disjoint union of some open neighborhoods Ũ1, . . . , Ũm. So, since Ũi
is homeomorphic to Vi \ {bi}, which in turn is homeomorphic to the complex unit punctured
disk, we have a homeomorphism φi : Ũi → D \ {0} (D denoting unit disk). Then, we can
extend φi to ahomeomorphism Ũi ∪ {xi} → D by adding a point xi to X̃ (I think, explicitly
we could let xi = limw→0 φ

−1
i (w)). Thus, X = X̃ ∪ {x1, . . . , xm} is the compact surface

we want. The complex structure of X is just lifted from Y : for each x ∈ x̃, we have an open
neighborhoodUx such that f̃ : Ux → f(Ux) is a homeomorphism; so taking a chart ϕx containing
f(Ux), we will have ϕx ◦ f serve as a chart at x in the neighborhood Ux. For the points xi, the
homeomorphisms ϕi considered before serve as charts. Moreover, this complex structure ensures
that f is holomorphic simply because in the local coordinates of these charts, f is just the identity.
�

6.2 Hyperelliptic Covers

In Miranda, the glueing construction of a hyperelliptic Riemann surface showed that the pro-
jection map to the Riemann sphere had degree 2. In Cavalieri and Miles, this is taken as the
definition of a hyperelliptic Riemann surface. A map of degree 2 from a hyperelliptic Riemann
surface to P1 is called a hyperelliptic cover. By the Riemann-Hurwitz formula, we see there
have to be 2g + 2 ramification points of multiplicity 2, and so there are 2g + 2 branch points
of a hyperelliptic cover. They show that upto isomophism there is precisely one hyperelliptic
cover from each compact Riemann surface of genus g and that this map has just one nontrivial
isomorphism, implying

H
g

2→0
((2)2g+2) =

1

2
.

First of all, they show that there is atleast one hyperelliptic cover originating from a genus g
Riemann surface and their explicit construction is the one given in Miranda (actually they don’t
consider the glueing construction, but appeal to the Riemann Existence theorem to extend the
affine plane curve to the required surface)! After some thought I realized this should be the
case, otherwise taking into account that there is just one hyperelliptic cover, we would have two
different definitions of a hyperelliptic Riemann surface.

6.3 Counting Monodromy Representations

Cavalieri and Miles introduce the same notion of monodromy representations as Miranda. They
connect this to the partitions of degree d: since permutations in Sd have the same cycle type if
and only if they are conjugates, we can index conjugacy classes by partitions of d.
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