
REPRESENTATION THEORY OF HEISENBERG GROUP

DAKSH AGGARWAL

The Heisenberg group is Heis(q) =


1 x z
0 1 y
0 0 1

 : x, y, z ∈ Fq

.

1. Conjugacy classes

Let g =

1 a c
0 1 b
0 0 1

. We have the following calculation:

1 x z
0 1 y
0 0 1

1 a c
0 1 b
0 0 1

1 x z
0 1 y
0 0 1

−1 =
1 a c+ (bx− ay)
0 1 b
0 0 1

 .
So, there are two types of classes depending on whether (a, b) = (0, 0).
• (a, b) = (0, 0). Then it is clear that g is fixed under conjugates, so there are q conjugacy
classes of single elements.
• (a, b) 6= (0, 0). Fix d ∈ Fq. We need to check how many solutions (x, y) ∈ F2

q exist to

bx− ay = d.

Clearly, there are q solutions. So, there are (q3 − q)/q = q2 − 1 classes of size q each in this
case.

2. Representations of Heis(q)

• q2 irreducible representations of dimension 1: for each (a, b) ∈ F2
q ,

µa,b

1 x z
0 1 y
0 0 1

 = ψ(ax+ by),

where ψ(x) = exp(2πiTr(x)p ). Here we are taking q = pn and the trace is

Tr(x) = x+ xp + · · ·+ xp
n−1

.

• q − 1 irreducible representations of dimension q: for each s ∈ F×q , let A ⊆ G = Heis(q) be
the subgroup of elements with x = 0. Then

πs = IndGA ψs,

where

ψs

1 0 z
0 1 y
0 0 1

 = ψ(sz).

Since ψ maps to the complex unit circle, it is easy to check these are all indeed irreducible and
similarly simple to check they are inequivalent.
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3. Dimension q representations

We can now try working out πs explicitly following Terras’ Proposition 1 in Ch. 16. A useful
obervation is that 1 x z

0 1 y
0 0 1

 =

1 0 z
0 1 0
0 0 1

1 0 0
0 1 y
0 0 1

1 x 0
0 1 0
0 0 1

 .
So, it suffices to define πs on each of these three types of matrices. From the above decomposition,
we also see that a complete set of unique representatives for A \G is

1 x 0
0 1 0
0 0 1

 : x ∈ Fq

 .

We denote these representatives by gi.
Now, an orthonormal basis for the vector space V of functions f : G → C such that f(hg) =

ψs(h)f(g) for all h ∈ A and g ∈ G, is

fi(g) = ψs(gg
−1
i )δA(gg

−1
i ),

where δA is the delta function that is supported exactly on A.

• Let g =

1 0 z
0 1 0
0 0 1

. Then for any t =

1 a c
0 1 b
0 0 1

 ∈ G,

πsg(fi)(t) = fi(tg)

= ψs(tgg
−1
i )δA(tgg

−1
i ).

Now,

tgg−1i =

1 a c
0 1 b
0 0 1

1 0 z
0 1 0
0 0 1

1 −xi 0
0 1 0
0 0 1

 =

1 a− xi z + c
0 1 b
0 0 1

 ,
and so δA(tgg−1i ) = 1 precisely when a = xi, in which case

πsg(fi)(t) = ψ(s(z + c)) = ψ(sz)fi(t).

So, we have worked out that

πs

1 0 z
0 1 0
0 0 1

 = ψ(sz)Iq,

where Iq is the identity matrix of size q.

• Let g =

1 0 0
0 1 y
0 0 1

. In this case,

tgg−1i =

1 a c
0 1 b
0 0 1

1 0 0
0 1 y
0 0 1

1 −xi 0
0 1 0
0 0 1

 =

1 a− xi ay + c
0 1 y + b
0 0 1

 ,
and so again δA(tgg−1i ) = 1 precisely when a = xi, in which case

πsg(fi)(t) = ψ(s(xiy + c)) = ψ(sxiy)fi(t)
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So,

πs

1 0 0
0 1 y
0 0 1

 =


ψ(sx1y) 0 . . . 0

0 ψ(sx2y) . . . 0
...

...
. . .

...
0 0 . . . ψ(sxqy)

 ,
where Fq = {x1, . . . , xq}.

• Let g =

1 x 0
0 1 0
0 0 1

. Here
tgg−1i =

1 a c
0 1 b
0 0 1

1 0 0
0 1 y
0 0 1

1 −xi 0
0 1 0
0 0 1

 =

1 a+ x− xi c
0 1 b
0 0 1

 ,
and δA(tgg−1i ) = 1 when a = xi − x, in which case

πsg(fi)(t) = ψ(sc) = f(xi−x)j (t).

Thus, πs

1 x 0
0 1 0
0 0 1

 is the permutation matrix δxi−x(a).

3.1. Character. We can also calculate the character χπs using the Frobenius formula (Terras pp.
271):

χπs(g) =
∑

gi∈A\G

χψs(gigg
−1
i )δA(gigg

−1
i ).

When g = (a, b, c) is such that a 6= 0, then δA(gigg−1i ) = 0. So, suppose a = 0. Then,

χπs(g) =
∑
x∈Fq

ψ(s(c+ bx))

= ψ(sc)
∑
x∈Fq

ψ(sbx)

= ψ(sc)
∑
x∈Fq

e2πiTr(x)/p,

where in the last equality we are assuming b 6= 0, because otherwise the sum is simply qψ(sc). We
need to understand Tr(x). Intuitively, it should be equidistributed over Fp. This can be proved as
follows (are there simpler ways?). The map Tr : Fq → Fp has kernel exactly {xp − x : x ∈ Fq} (by
Hilbert’s theorem 90). But the map H : x 7→ xp − x has kernel precisely Fp, and so |ker(Tr)| =
|im(H)| = pn/p = pn−1. Therefore, |im(Tr)| = pn/pn−1 = p. Thus, Tr is surjective, which paired
with the additivity and kernel size pn−1 of Tr easily implies that Tr is indeed equidistributed. So,
if b 6= 0, then the above sum is

= ψ(sc)pn−1
p−1∑
x=0

e2πix/p = 0.

So, χπs(0, 0, c) = qψ(sc) and it is zero on the other conjugacy classes.
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4. Ramanujan graphs

A connected (q + 1)-regular graph X is Ramanujan if

µ := max{|λ| : λ ∈ Spec(X), |λ| 6= q + 1},

is such that µ ≤ 2
√
q.

We can use the Cayley graphs of Heis(p) to give a few examples of Ramanujan graphs. We will de-
note elements ofG = Heis(p) by tuples (x, y, z). Let S = {(x, y, 0) ∈ F3

p : exactly one of x or y = 0 }.
Then, it is easy to check that S is a symmetric generating set for Heis(p). To check whether the
Caylely graph X = X(G,S) is a Ramanujan graph, we calculate the spectrum of X using its
irreducible representations. We have

A(X) '
⊕
π∈Ĝ

dπMπ,

where
Mπ =

∑
s∈S

π(s).

Note that X is 2(p− 1)-regular.
For (a, b) ∈ F2

p and π = µa,b, we have

Mπ =

p−1∑
x=1

(µa,b(x, 0, 0) + µa,b(0, x, 0))

=

p−1∑
x=1

(e2πiax/p + e2πibx/p)

=


−2 ab 6= 0

2(p− 1) (a, b) = (0, 0)

p− 2 else.

But p− 2 ≤ 2
√
2p− 3 only if p = 2, 3, 5, 7.

Next, for s ∈ F×p and π = πs, we have

Mπ =

p−1∑
x=1

(πs(x, 0, 0) + πs(0, x, 0))

=

p−1∑
x=1

P x +

p−1∑
x=1

D(sx)

=


0 1 . . . 1
1 0 . . . 1
...

...
. . .

...
1 1 . . . 0

+


p− 1 0 . . . 0
0 −1 . . . 0
...

...
. . .

...
0 0 . . . −1



=


p− 1 1 . . . 1
1 −1 . . . 1
...

...
. . .

...
1 1 . . . −1

 .
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Here P is a primitive permutation matrix and D(sx) is a diagonal matrix (ψ(sxn))0≤n≤p−1. The
eigenvalues of Mπ can be calculated to be −2 (multiplicity p − 2) and p − 2 ± √p. This prevents
p = 7 from being Ramanujan too. So, Heis(p) for p = 2, 3, 5 give us Ramanujan graphs.
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