REPRESENTATION THEORY OF HEISENBERG GROUP

DAKSH AGGARWAL

The Heisenberg group is $\operatorname{Heis}(q)=\left\{\left[\begin{array}{lll}1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1\end{array}\right]: x, y, z \in \mathbb{F}_{q}\right\}$.

1. Conjugacy classes

Let $g=\left[\begin{array}{lll}1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right]$. We have the following calculation:

$$
\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
1 & a & c+(b x-a y) \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right] .
$$

So, there are two types of classes depending on whether $(a, b)=(0,0)$.

- $(a, b)=(0,0)$. Then it is clear that g is fixed under conjugates, so there are q conjugacy classes of single elements.
- $(a, b) \neq(0,0)$. Fix $d \in \mathbb{F}_{q}$. We need to check how many solutions $(x, y) \in \mathbb{F}_{q}^{2}$ exist to

$$
b x-a y=d .
$$

Clearly, there are q solutions. So, there are $\left(q^{3}-q\right) / q=q^{2}-1$ classes of size q each in this case.

2. Representations of $\operatorname{Heis}(q)$

- q^{2} irreducible representations of dimension 1: for each $(a, b) \in \mathbb{F}_{q}^{2}$,

$$
\mu_{a, b}\left[\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]=\psi(a x+b y),
$$

where $\psi(x)=\exp \left(\frac{2 \pi i \operatorname{Tr}(x)}{p}\right)$. Here we are taking $q=p^{n}$ and the trace is

$$
\operatorname{Tr}(x)=x+x^{p}+\cdots+x^{p^{n-1}} .
$$

- $q-1$ irreducible representations of dimension q : for each $s \in \mathbb{F}_{q}^{\times}$, let $A \subseteq G=\operatorname{Heis}(q)$ be the subgroup of elements with $x=0$. Then

$$
\pi_{s}=\operatorname{Ind}_{A}^{G} \psi_{s},
$$

where

$$
\psi_{s}\left[\begin{array}{lll}
1 & 0 & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]=\psi(s z) .
$$

Since ψ maps to the complex unit circle, it is easy to check these are all indeed irreducible and similarly simple to check they are inequivalent.

3. Dimension q REPRESENTATIONS

We can now try working out π_{s} explicitly following Terras' Proposition 1 in Ch. 16. A useful obervation is that

$$
\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & z \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & x & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

So, it suffices to define π_{s} on each of these three types of matrices. From the above decomposition, we also see that a complete set of unique representatives for $A \backslash G$ is

$$
\left\{\left[\begin{array}{lll}
1 & x & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]: x \in \mathbb{F}_{q}\right\} .
$$

We denote these representatives by g_{i}.
Now, an orthonormal basis for the vector space V of functions $f: G \rightarrow \mathbb{C}$ such that $f(h g)=$ $\psi_{s}(h) f(g)$ for all $h \in A$ and $g \in G$, is

$$
f_{i}(g)=\psi_{s}\left(g g_{i}^{-1}\right) \delta_{A}\left(g g_{i}^{-1}\right),
$$

where δ_{A} is the delta function that is supported exactly on A.

- Let $g=\left[\begin{array}{lll}1 & 0 & z \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. Then for any $t=\left[\begin{array}{lll}1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right] \in G$,

$$
\begin{aligned}
\pi_{s} g\left(f_{i}\right)(t) & =f_{i}(t g) \\
& =\psi_{s}\left(t g g_{i}^{-1}\right) \delta_{A}\left(t g g_{i}^{-1}\right) .
\end{aligned}
$$

Now,

$$
\operatorname{tgg}_{i}^{-1}=\left[\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & z \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -x_{i} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & a-x_{i} & z+c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right],
$$

and so $\delta_{A}\left(t g g_{i}^{-1}\right)=1$ precisely when $a=x_{i}$, in which case

$$
\pi_{s} g\left(f_{i}\right)(t)=\psi(s(z+c))=\psi(s z) f_{i}(t)
$$

So, we have worked out that

$$
\pi_{s}\left[\begin{array}{lll}
1 & 0 & z \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\psi(s z) I_{q}
$$

where I_{q} is the identity matrix of size q.

- Let $g=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & y \\ 0 & 0 & 1\end{array}\right]$. In this case,

$$
\operatorname{tgg}_{i}^{-1}=\left[\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -x_{i} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & a-x_{i} & a y+c \\
0 & 1 & y+b \\
0 & 0 & 1
\end{array}\right]
$$

and so again $\delta_{A}\left(\operatorname{tgg}_{i}^{-1}\right)=1$ precisely when $a=x_{i}$, in which case

$$
\pi_{s} g\left(f_{i}\right)(t)=\psi\left(s\left(x_{i} y+c\right)\right)=\psi\left(s x_{i} y\right) f_{i}(t)
$$

So,

$$
\pi_{s}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
\psi\left(s x_{1} y\right) & 0 & \ldots & 0 \\
0 & \psi\left(s x_{2} y\right) & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \psi\left(s x_{q} y\right)
\end{array}\right]
$$

where $\mathbb{F}_{q}=\left\{x_{1}, \ldots, x_{q}\right\}$.

- Let $g=\left[\begin{array}{lll}1 & x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. Here

$$
\operatorname{tgg}_{i}^{-1}=\left[\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -x_{i} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & a+x-x_{i} & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right]
$$

and $\delta_{A}\left(t g g_{i}^{-1}\right)=1$ when $a=x_{i}-x$, in which case

$$
\pi_{s} g\left(f_{i}\right)(t)=\psi(s c)=f_{\left(x_{i}-x\right)_{j}}(t)
$$

Thus, $\pi_{s}\left[\begin{array}{lll}1 & x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ is the permutation matrix $\delta_{x_{i}-x}(a)$.
3.1. Character. We can also calculate the character $\chi_{\pi_{s}}$ using the Frobenius formula (Terras pp. 271):

$$
\chi_{\pi_{s}}(g)=\sum_{g_{i} \in A \backslash G} \chi_{\psi_{s}}\left(g_{i} g g_{i}^{-1}\right) \delta_{A}\left(g_{i} g g_{i}^{-1}\right)
$$

When $g=(a, b, c)$ is such that $a \neq 0$, then $\delta_{A}\left(g_{i} g g_{i}^{-1}\right)=0$. So, suppose $a=0$. Then,

$$
\begin{aligned}
\chi_{\pi_{s}}(g) & =\sum_{x \in \mathbb{F}_{q}} \psi(s(c+b x)) \\
& =\psi(s c) \sum_{x \in \mathbb{F}_{q}} \psi(s b x) \\
& =\psi(s c) \sum_{x \in \mathbb{F}_{q}} e^{2 \pi i \operatorname{Tr}(x) / p}
\end{aligned}
$$

where in the last equality we are assuming $b \neq 0$, because otherwise the sum is simply $q \psi(s c)$. We need to understand $\operatorname{Tr}(x)$. Intuitively, it should be equidistributed over \mathbb{F}_{p}. This can be proved as follows (are there simpler ways?). The map $\operatorname{Tr}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{p}$ has kernel exactly $\left\{x^{p}-x: x \in \mathbb{F}_{q}\right\}$ (by Hilbert's theorem 90). But the map $H: x \mapsto x^{p}-x$ has kernel precisely \mathbb{F}_{p}, and so $|\operatorname{ker}(\operatorname{Tr})|=$ $|\operatorname{im}(H)|=p^{n} / p=p^{n-1}$. Therefore, $|\operatorname{im}(\operatorname{Tr})|=p^{n} / p^{n-1}=p$. Thus, Tr is surjective, which paired with the additivity and kernel size p^{n-1} of Tr easily implies that Tr is indeed equidistributed. So, if $b \neq 0$, then the above sum is

$$
=\psi(s c) p^{n-1} \sum_{x=0}^{p-1} e^{2 \pi i x / p}=0
$$

So, $\chi_{\pi_{s}}(0,0, c)=q \psi(s c)$ and it is zero on the other conjugacy classes.

4. Ramanujan graphs

A connected $(q+1)$-regular graph X is Ramanujan if

$$
\mu:=\max \{|\lambda|: \lambda \in \operatorname{Spec}(X),|\lambda| \neq q+1\},
$$

is such that $\mu \leq 2 \sqrt{q}$.
We can use the Cayley graphs of $\operatorname{Heis}(p)$ to give a few examples of Ramanujan graphs. We will denote elements of $G=\operatorname{Heis}(p)$ by tuples (x, y, z). Let $S=\left\{(x, y, 0) \in \mathbb{F}_{p}^{3}\right.$: exactly one of x or $\left.y=0\right\}$. Then, it is easy to check that S is a symmetric generating set for $\operatorname{Heis}(p)$. To check whether the Caylely graph $X=X(G, S)$ is a Ramanujan graph, we calculate the spectrum of X using its irreducible representations. We have

$$
A(X) \simeq \bigoplus_{\pi \in \widehat{G}} d_{\pi} M_{\pi}
$$

where

$$
M_{\pi}=\sum_{s \in S} \pi(s)
$$

Note that X is $2(p-1)$-regular.
For $(a, b) \in \mathbb{F}_{p}^{2}$ and $\pi=\mu_{a, b}$, we have

$$
\begin{aligned}
M_{\pi} & =\sum_{x=1}^{p-1}\left(\mu_{a, b}(x, 0,0)+\mu_{a, b}(0, x, 0)\right) \\
& =\sum_{x=1}^{p-1}\left(e^{2 \pi i a x / p}+e^{2 \pi i b x / p}\right) \\
& = \begin{cases}-2 & a b \neq 0 \\
2(p-1) & (a, b)=(0,0) \\
p-2 & \text { else. }\end{cases}
\end{aligned}
$$

But $p-2 \leq 2 \sqrt{2 p-3}$ only if $p=2,3,5,7$.
Next, for $s \in \mathbb{F}_{p}^{\times}$and $\pi=\pi_{s}$, we have

$$
\begin{aligned}
M_{\pi} & =\sum_{x=1}^{p-1}\left(\pi_{s}(x, 0,0)+\pi_{s}(0, x, 0)\right) \\
& =\sum_{x=1}^{p-1} P^{x}+\sum_{x=1}^{p-1} D(s x) \\
& =\left[\begin{array}{cccc}
0 & 1 & \ldots & 1 \\
1 & 0 & \ldots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \ldots & 0
\end{array}\right]+\left[\begin{array}{ccc}
p-1 & 0 & \ldots \\
0 & -1 & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right] \\
& =\left[\begin{array}{cccc}
p-1 & 1 & \ldots & 1 \\
1 & -1 & \ldots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \ldots & -1
\end{array}\right] .
\end{aligned}
$$

Here P is a primitive permutation matrix and $D(s x)$ is a diagonal matrix $(\psi(s x n))_{0 \leq n \leq p-1}$. The eigenvalues of M_{π} can be calculated to be -2 (multiplicity $p-2$) and $p-2 \pm \sqrt{p}$. This prevents $p=7$ from being Ramanujan too. So, $\operatorname{Heis}(p)$ for $p=2,3,5$ give us Ramanujan graphs.

