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1 Introduction

The goal of this expository report is to explain a beautiful connection between graph theory and
algebraic number theory. Our exposition is based on Audrey Terras’ wonderful Zeta Functions
of Graphs [12]. We will explore three main analogues between graphs and algebraic number
theory, each building on the previous: Galois theory, the Frobenius automorphism, and the Artin
L-function. We have attempted to emphasize the remarkable similarities and significant differ-
ences between the theories for graph coverings and extensions of number fields. It has been our
endeavour to make the exposition accessible to the reader who has taken a first course in abstract
algebra. Therefore we include informal introductions and concrete examples for algebraic topics
such as finite Galois theory and number fields because they are very much relevant to properly
see the wonderful juxtaposition that exists between graph coverings and number fields. Even
for graph coverings, we emphasize examples and include only a handful of proofs to illustrate
the formal ideas. The interested reader is encouraged to refer to Terras’ book for more details
about proofs and such. Indeed, our exposition focuses on a small subset of the topics covered
in Terras’ book, and in particular we have almost entirely left out the rich analytic viewpoint of
the connection between graph coverings and number theory. Thus, our hope is that this serves as
something of a primer to the algebraic aspect of Terras’ book, so that the interested reader might
gain even more from Terras’ brisk exposition.

We first set our basic definitions pertaining to graphs, which might be slightly different from
those with which the reader is familiar. A graph X consists of a pair of sets (VX , EX): VX is
called the vertex set and EX is the edge set, consisting of an ordered pair of elements from VX .
All our graphs will be finite, so that |VX | , |EX | < ∞. A path p in a graph X from a vertex a to
vertex b is a sequence of vertices 〈v1, v2, . . . , vn〉 such that v1 = a, vn = b, and for 2 ≤ i ≤ n,
vi−1 and vi are adjacent, meaning that (vi−1, vi) ∈ EX . As we will shortly see, we will be
putting a sort of topology on our graphs, and therefore it will be useful to also think of an edge
(vi−1, vi) as a directed interval from vi−1 to vi. A connected graph is one in which there exists
a path between any two vertices. Without exception, all the results in this report will be about
connected graphs. Further, we also allow graphs to have loops and multiple edges, but all of our
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examples will be focused on graphs without loops and multiple edges. We will not need much
in the way of deep theorems from graph theory, and therefore a basic intuition about graphs will
suffice.

2 Finite Unramified Coverings for Graphs

We start with the concept of a graph covering that will drive most, if not all, of the strik-
ing analogies we will draw with field theory and algebraic number theory. The notion of a
covering−involving open sets, homeomorphisms, and such−belongs properly to topology. If
the reader is familiar with basic topology, then they will recognize that a graph covering is a
discretized version of a topological covering. By these remarks, we also want to indicate that we
will be thinking about a graph much more as a topological object rather than a purely combina-
torial one.

To define a graph covering, we need a notion of a neighborhood. A neighborhood U of a
vertex v in a directed graph X is created by taking half of every edge incident at v; since we are
treating an edge as a directed interval, the notion of dividing an edge makes sense. The “half”
is arbitrary and is meant to convey that we are concerned only with the locality of vertex v. For
example, the neighborhood of vertex v1 is shown in Figure 2.1.
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(a) A directed graph
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e4

(b) Neighborhood of v1

Figure 2.1

A neighborhood is analogous to an ε-radius ball centered at a point p ∈ R for some ε > 0.
While in R the choice of ε can make a difference, for graph vertices there is a unique neighbor-
hood centered at each vertex, for our purposes at least; therefore we may speak of “the neighbor-
hood” of a vertex v. While we won’t require notions of “openness” and “closedness” for a graph
neighborhood, the way we have defined neighborhoods puts a sort of topology on the graph.

Before we formally define a graph covering, consider the graph-theoretic analogue of the
covering of the unit circle by the real line R.
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(a)

(b)

Figure 2.2: (a) An infinite path graph as a covering of (b) the cycle graph C3

Notice that though the two graphs of Figure 2.2 are globally very different, the neighborhoods
of a vertex in the infinite path graph and in C3 are the “same” as the neighborhood pictured in
Figure 2.3; this local “sameness” of the graphs is the defining feature of a graph covering.

Figure 2.3: A neighborhood in the path graph and C3

For example, the cube is a covering of the tetrahedron K4 shown in Figure 2.4.
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(a) The tetrahedron K4
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(b) The cube as a covering of K4

Figure 2.4

The notion of “sameness” here can be formalized by the concept of a homeomorphism, the
topological equivalent of an isomorphism. A homeomorphism is a bijective map that preserves
the topology of its domain, i.e., it maps neighborhoods to neighborhoods and the preimage of a
neighborhood is a neighborhood too. In the example of the cube and K4, for each vertex v in X ,
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the neighborhoods of v′ and v′′ are homeomorphic to the neighborhood of v; for instance, a has
exactly three edges originating from it and so do a′ and a′′. The concept of a graph covering is
formalized as follows.

Definition 2.1 (Covering) An undirected finite graph Y is a covering of an undirected graph X
if, after arbitrarily directing the edges of X , the edges of Y can be suitably directed such that
there exists an onto covering map π : Y → X . That is, for any v ∈ VX , if Ũ is the neighborhood
of a vertex in π−1(v) and U is the neighborhood of v, then π restricts to a homeomorphism
Ũ → U . A graph covering Y of X is denoted as Y/X .

Referring to Figures 2.4, in the notation of the definition, π−1(v) = {v′, v′′} for each vertex
v in K4; we say v′ and v′′ lie above v. So, since there are two local copies in the cube of each
vertex of K4, the cube is called a 2-sheeted or quadratic covering of K4.

In general, for some positive integer d, we can have a d-sheeted Y covering of a graph X:
for each vertex v of X , π−1(v) contains exactly d vertices of Y . It is natural to ask if for every
d ∈ Z>0, there is a d-sheeted covering Y for a graphX . The answer is yes, because we could just
consider the graph Y consisting of d disjoint copies of X; here we note that henceforth we will
not consider this kind of a construction or any disconnected graph a covering for our purposes. A
more interesting construction arises from considering a spanning tree ofX . A spanning tree T of
a graph X is a subgraph of X that is a tree and contains all the vertices of X . To get a d-sheeted
covering of X , we make d copies of a spanning tree T of X , and then add edges between the
copies of T so that the definition of a covering is satisfied.

For instance, to obtain a quadratic covering of K4, we make two copies of the spanning tree
of K4, indicated by dotted edges in Figure 2.4(a), and then “glue” them together by edges so
that we have homeomorphic neighborhoods. This glueing is not necessarily unique; one way of
glueing gives us the cube of Figure 2.4(b) and another way gives us the covering of Figure 2.5
below.

a′

b′

c′ d′

a′′

b′′

c′′ d′′

Figure 2.5: Another quadratic covering of K4

The difference between the two coverings is that in the cube there are six edges between the
two sheets while in the other there are only two. We will later see that the analogy drawn with
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number theory will suggest results that will help us construct coverings of a graph that have
specific properties.

The concept of a graph covering suggests an analogy with field extensions, which we now
briefly introduce.

Definition 2.2 (Field extension) A field K is a field extension of a field L if L ⊆ K. More
generally, K is a field extension of L if there is a nonzero ring homomorphism L → K, called
an embedding of L in K. This relationship is denoted as K/L.

In a field extension K/L, we can view K as a vector space over L − the axioms for a vector
space are directly implied by the field axioms. So we then have a notion of a basis for K when
viewed as a L-vector space and can therefore talk about the dimension of K. The degree of a
field extension K/L is the dimension dimLK of K as a L-vector space and is denoted [K : L].
We will care only about finite field extensions K/L here, i.e., [K : L] <∞. A familiar example
of a finite field extension is C/R, which has degree 2 since {1, i} form a R-basis for C. Notice
that the degree of a field extension corresponds to the number of sheets in a graph covering Y/X .

When K/L is a finite field extension and L = Q, then K is called a number field. Important
examples of number fields are quadratic number fields, which are of form Q(

√
d) where d is

a squarefree integer. What is meant by Q(
√
d)? The field Q(

√
d) is the smallest field that

contains both Q and
√
d. Since Q(

√
d) is a ring, it must have all elements of the form p + q

√
d

for any p, q ∈ Q. Because we also want it to be field, we must include all elements of the
form (p + q

√
d)−1 for p, q ∈ Q, which is the same as (p − q

√
d)/(p2 − q2d) and this is again

of the form p′ + q′
√
d, for some p′, q′ ∈ Q. So Q(

√
d) = {p + q

√
d : p, q ∈ Q}. We will

be constructing analogues for coverings of some of the fundamental objects associated with a
number field (especially ones which are Galois). The reader might also wonder why they are
called “number fields”; we will be discussing the answer to this and more soon.

At first glance, the analogy between graph coverings and field extensions might seem less than
perfect. For instance, there is no obvious notion of a local homeomorphism in a field extension
and there is no canonical inclusion map in a graph covering. However, we will have to wait until
we have discussed the Fundamental Theorem of Galois Theory for coverings before we see its
striking similarity with field extensions. We now begin to build up to this theorem now.

3 Galois Theory

3.1 Galois Coverings and Extensions

To define what it means for a finite field extensionK/L to be Galois, we need a little terminology.
We will be assuming throughout that K has characteristic 0 so as to avoid separability issues.
This doesn’t constitute any disadvantage for us since we will eventually be working over Q,
whose field extensions always have characteristic 0.
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We define the group of L-automorphisms of K, denoted Aut(K/L), to consist of all automor-
phisms of K that leave L pointwise fixed: i.e., σ ∈ Aut(K/L) if and only if σ(l) = l for all
l ∈ L. For instance, consider Aut(Q(

√
2)/Q). If σ is an automorphism in Aut(Q(

√
2)/Q),

then σ(
√
2)2 = σ(

√
2
2
) = σ(2) = 2, and so σ(

√
2) ∈ {

√
2,−
√
2}. Once σ(

√
2) has

been determined, the action of σ on every element p + q
√
2 ∈ Q(

√
2) has been deter-

mined since σ(p + q
√
2) = p + qσ(

√
2). Therefore, there are precisely two elements in

Aut(Q(
√
2)/Q): one is the identity automorphism and the other exchanges

√
2 with −

√
2. So,∣∣Aut(Q(

√
2)/Q)

∣∣ = 2 = [Q(
√
2) : Q]. This observation can be taken to be the definition of

a finite Galois extension, but we defer this for a little and instead use it as motivation for the
definition of a Galois graph covering.

Recall that a graph automorphism f of a graph X is an edge-preserving bijective function
f : VX → VX , i.e., f is a permutation of the vertices such that for any a, b ∈ VX , (a, b) ∈ EX if
and only if (f(a), f(b)) ∈ EX .

Definition 3.1 (Galois covering) Let Y/X be a d-sheeted covering with projection map
π : Y → X . We call Y a Galois covering of X if there are d graph automorphisms σ : Y → Y
such that π ◦ σ = π. The Galois group Gal(Y/X) is the group of maps σ under function com-
position.

For an example, consider the cube of Figure 2.4, which is a quadratic Galois covering of K4.
Its Galois group consists of the trivial automorphism and the automorphism that exchanges v′

with v′′ for each vertex v in G. However, the quadratic covering of Figure 2.5 is not Galois since
a nontrivial automorphism would need to exchange d′ with d′′, and b′ with b′′, but b′′ and d′′ are
adjacent while b′ and d′ are not.

Returning to a finite field extension K/L, we have hinted at what it means for K/L to be
Galois. However, we might wish for a more algebraic characterization.

First, it is not always the case that |Aut(K/L)| = [K : L]. For an example, consider
K = Q( 3

√
2) and L = Q. For a σ ∈ Aut(Q( 3

√
2)/Q), we require σ( 3

√
2)3 = σ(2) = 2; so

σ( 3
√
2) is a cube root of 2 but Q( 3

√
2) ⊂ R and the only real cube root of 2 is 3

√
2. Therefore,

σ( 3
√
2) must be 3

√
2. It is not hard to show that {1, 3

√
2, 3
√
2
2} is a Q-basis for Q( 3

√
2), and so σ

fixes all of Q( 3
√
2). Thus, Aut(Q( 3

√
2)/Q) consists of just the identity automorphism.

The fixed field KG of a group of automorphisms G of a field K is defined to be the subset of
K that is pointwise fixed by G. That is, k ∈ KG if and only if σ(k) = k for all σ ∈ G.1 For
instance, we see that the fixed field of Aut(Q(

√
2)/Q) is Q while that of Aut(Q( 3

√
2)/Q) is the

whole field Q( 3
√
2). The observation that the fixed field of Aut(Q(

√
2)/Q) is exactly Q is an

important one and constitutes what it means to be a Galois extension.

Definition 3.2 (Galois field extension) A finite field extension K/L is Galois if and only if the

1We haven’t actually proven that Aut(L/K) is a group or that KG is a field, but these facts follows rather quickly
from the definitions.
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fixed field of Aut(K/L) is L. When K/L is Galois, we denote Aut(K/L) as Gal(K/L) instead
and call it the Galois group of K/L.

The characterization we indicated earlier is also true.

Theorem 3.3 A finite field extension K/L is Galois if and only if |Aut(K/L)| = [K : L].

A proof can be found in [3, pp. 244-245].

The analogy between Galois extensions and Galois coverings is illustrated by the diagrams of
Figure 3.1. Here ι denotes the embedding of the field L into K and π as usual is the projection
map. The condition (σ ◦ ι)(l) = ι(l) for all l ∈ L is precisely the condition that L is fixed
pointwise by σ. When K/L is Galois, there are exactly [K : L] automorphisms σ of K which
make the diagram commute. Similarly for a Galois covering.

K K

L

σ

ι ι

(a) A Galois field extension

Y Y

X

σ

π π

(b) A Galois covering

Figure 3.1

We now return to developing the Galois theory for graph coverings. This next proposition
will be basic to proving the main theorem of this section. It tells us that if two vertices ṽ1 and
ṽ2 of a Galois covering Y/X lie above a vertex v of X , then there exists an automorphism
g ∈ Gal(Y/X) such that g(ṽ1) = ṽ2. Recall that for a mapping f : Y → X , the fiber of x ∈ X
under f is its preimage f−1(x).

Proposition 3.4 Suppose that Y/X is a Galois covering and let v be a vertex in X . Then
Gal(Y/X) acts transitively on the fiber of v under the projection map π : Y → X .

To prove this proposition, we need the next lemma, which we will repeatedly appeal to even
later and is true for non-Galois coverings too. Given a path P in X , a lift of P to Y is a path P̃
in Y such that π(P̃ ) = P . For example, the path 〈b, c, d〉 in K4 lifts to the paths 〈b′, c′′, d′〉 and
〈b′′, c′, d′′〉 in the cube (Figure 2.4).

Lemma 3.5 (Unique path-lifting property) Let Y/X be a covering. Let v be a vertex inX and
let ṽ be a vertex in the fiber of v under the projection π. If P is a path in X with initial vertex v,
then there is a unique lift P̃ of P to Y with initial vertex ṽ.

Proof. Let Ũ and U be neighborhoods of ṽ and v respectively. Suppose the first edge of P is
e. Since we require that π : Ũ → U be a homeomorphism, there is precisely one edge ẽ in the

7



neighborhood of ṽ such that π(ẽ) = e. So the first edge of P̃ has to be ẽ. Repeating the same
argument for the remaining vertices of P , we conclude that there is a unique lift P̃ of P starting
at ṽ. �

We now prove Proposition 3.4.

Proof. We have to show that the d distinct automorphisms in Gal(Y/X) map a vertex to d distinct
vertices of Y . Now, two automorphisms g1 and g2 map a vertex ṽ to distinct vertices if and only
if g−11 g2(ṽ) 6= ṽ. So, it is sufficient to show that, for some vertex ṽ in Y and an automorphism
g ∈ Gal(Y/X), if g(ṽ) = ṽ then g is the trivial automorphism. Let ũ be any other vertex of Y
and let P̃ be a path from ṽ to ũ. Let P be the projection of P̃ to X . Note that the path g(P̃ ) in Y
begins at g(ṽ) = ṽ and ends at g(ũ). Further, since π◦g = g, we have π(g(P̃ )) = π(P̃ ) = P and
so both g(P̃ ) and P̃ are lifts of P starting at ṽ. By Lemma 3.5, we must then have g(P̃ ) = P ,
and thus g(ũ) = u. Therefore g is the trivial automorphism. �

Proposition 3.4 gives us a useful way to structure how we think about the sheets of a Galois
covering Y/X . Let v be a vertex in X . Then, corresponding to the identity automorphism, we
can arbitrarily label some vertex of Y in the fiber of v as (v, 1) and label the vertex we obtain by
applying an automorphism g ∈ Gal(Y/X) to (v, 1) as vertex (v, g). The transitivity of the action
of Gal(Y/X) on each fiber ensures we can label all vertices of Y by pairs of the form (v, g) for
some vertex v in X and g ∈ Gal(Y/X).

3.2 Fundamental Theorem of Galois Theory

We begin with a broad overview of the Fundamental Theorem of Galois Theory, so that the reader
who has not seen Galois Theory before might be able to better appreciate Terras’ Galois Theory
for graph coverings. We refer the reader to [3] for a more complete exposition of finite Galois
Theory.

Suppose we have a finite Galois extension K/L and let H be a subgroup of Gal(K/L). Now,
what is the fixed field KH? By definition, KH is the subfield of K that is pointwise fixed by
all elements of H . Since H ≤ Gal(K/L), we certainly know that L ⊆ KH . Thus KH is an
intermediate extension of K/L, i.e., L ⊆ KH ⊆ K. What about Aut(K/KH)? We can see
that every σ ∈ Aut(K/KH) must also be in Gal(K/L) since L ⊆ KH , and so Aut(K/KH) is
a subgroup of Gal(K/L). The fascinating part is that in fact Aut(K/KH) = H , which by the
definition means that K/KH is also Galois! Put differently, this means that the map sending an
intermediate field F of K/L to Aut(K/F ) is a surjective map ϕ from the set of intermediate
fields of K/L to the set of subgroups of Gal(K/L).

Moreover, every subfield F of K containing L arises as the fixed field of some subgroup
H ≤ Gal(K/L), i.e., F = KH and, as you would hope, it can be shown that H = Aut(K/F ).
So, F = KAut(K/F ). This means that the map ϕ (from above) is injective − if for two interme-
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diate fields F1 and F2, Aut(K/F1) = Aut(K/F2), then F1 = KAut(K/F1) = KAut(K/F2) = F2.
Therefore, there is a bijective correspondence between the intermediate fields of a Galois exten-
sion and the subgroups of its Galois group. This fact is the central assertion of the Fundamental
theorem for Galois field extensions.

Let us see a few examples. Consider Q(
√
2)/Q, which has a Galois group of just two ele-

ments, and is thus isomorphic to Z/2Z. The group Z/2Z has only two subgroups, namely the
trivial subgroup and the whole group itself. The trivial subgroup corresponds to Q while Z/2Z
corresponds to Q(

√
2); the Fundamental theorem then implies that there are is no field strictly

between Q and Q(
√
2). Next, consider the field extension Q(ζ5)/Q, where ζ5 is a primitive fifth

root of unity (so ζ55 = 1, and ζk5 6= 1 for any 1 ≤ k < 5). The field Q(ζ5) consists of all elements
of the form a0 + a1ζ5 + a2ζ

2
5 + a3ζ

3
5 , for ai ∈ Q, and is therefore is a degree-4 extension of Q.

As earlier, for any σ ∈ Aut(Q(ζ5)/Q) we need σ(ζ5)5 = 1, and so σ(ζ5) ∈ {1, ζ5, ζ25 , ζ35 , ζ45};
however σ(1) = 1, and so σ(ζ5) must be ζk5 for some 1 ≤ k < 5. Once σ(ζk) is fixed, the action
of σ on the rest of the field is determined since

σ(a0 + a1ζ5 + a2ζ
2
5 + a3ζ

3
5 ) = a0 + a1σ(ζ5) + a2σ(ζ5)

2 + a3σ(ζ5)
3.

Therefore, Aut(Q(ζ5)/Q) consists of the four automorphisms σk that send ζ5 to ζk5 for
1 ≤ k < 5, implying that Q(ζ5)/Q is Galois. Further, notice that Gal(Q(ζ5)/Q) is cyclic
with generator σ2, and is therefore isomorphic to (Z/5Z)×. Now the subgroups of (Z/5Z)× are
the trivial subgroup, the subgroup {1, 4}, and the whole group itself. Therefore, the Fundamental
theorem tells us that there is a field strictly between Q and Q(ζ5). It is easy to show that this in-
termediate field is Q(ζ5+ζ

−1
5 ) = Q(ζ5+ζ

4
5 ), which corresponds to the fixed field of the subgroup

of automorphisms {σ1, σ4}. A similar analysis applies more generally to field extensions of the
form Q(ζn)/Q, with ζn a primitive n-th root of unity; these are called cyclotomic extensions and
are of great importance in algebraic number theory.

We now move to the analogue of the Fundamental Theorem for graph coverings, beginning
with the notion of an intermediate covering. For a covering Y/X , let πY/X : Y → X denote its
projection map.

Definition 3.6 (Intermediate Covering) Let Y/X be a covering of graphs. Then a graph X̃ is
an intermediate covering to Y/X if X̃/X is a covering, Y/X̃ is a covering, and the projection
maps are transitive:

πY/X = πX̃/X ◦ πY/X̃ .

Definition 3.7 (Covering Isomorphism) Let X̃ and X̃ ′ be intermediate coverings to Y/X .
Then a graph isomorphism σ : X̃ → X̃ ′ is a covering isomorphism if πX̃/X = πX̃′/X ◦ σ; if

such a σ exists, X̃ and X̃ ′ are covering isomorphic. Further, if σ ◦ πY/X̃ = πY/X̃′ , then X̃ and

X̃ ′ are said to be equivalent, denoted X̃ ≈ X̃ ′.

Summarising, when we have two equivalent intermediate coverings X̃ and X̃ ′ in a covering
Y/X , the following diagram commutes:
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Y

X

X̃ X̃ ′

πY/X

π
Y/X̃

π
Y/X̃′

π
X̃/X π

X̃′/X

σ

For a simple example of a covering isomorphism, consider the cube as a covering of K4

(Figure 2.4). We can trivially view the cube as an intermediate covering between the cube and
K4, and so here we take both X̃ and X̃ ′ to be the cube. Then the non-identity automorphism
σ exchanging v′ with v′′ is a covering isomorphism from the cube to itself precisely because σ
belongs to the Galois group of the covering; this idea that an automorphism in the Galois group
of a Galois covering gives us a covering isomorphism from the covering to itself will be exploited
in the proof of Theorem 3.11.

Drawing analogies with field extensions, we might predict that there is a bijective correspon-
dence between intermediate coverings of a Galois covering and subgroups of its Galois group.
We would be mostly right in asserting this except that we cannot hope for a literal equality of
graphs when their corresponding subgroups are equal since there is no canonical inclusion map;
however we settle for the slightly weaker sense of equivalence defined above. Here we prove
only the first two assertions because the rest follow quite directly from the definitions and utilize
the same ideas as for the first ones.

Theorem 3.8 (Fundamental Theorem of Galois Theory) Let Y/X be a Galois covering with
Galois group G.

1. Given a subgroup H ≤ G, there exists a graph X̃ intermediate to Y/X such that
H = Gal(Y/X̃). Denote X̃ as X̃(H).

2. Suppose that X̃ is intermediate to Y/X . Then there is a subgroup H ≤ G which equals
Gal(Y/X̃). Denote H as H(X̃).

3. Two intermediate graphs X̃ and X̃ ′ are equivalent (in the sense of Definition 3.7) if and
only if H(X̃) = H(X̃ ′).

4. H(X̃(H)) = H and X̃(H(X̃)) ≈ X̃ . So there is a one-to-one correspondence X̃ ↔ H
between coverings intermediate to Y/X and subgroups of G(Y/X).

5. If X̃1 ↔ H1 and X̃2 ↔ H2 then X̃1 is intermediate to Y/X̃2 if and only if H1 ≤ H2.

Proof of [1 and 2].

1. The intermediate covering X̃ is constructed as follows. We let the vertices of X̃ be
{(v,Hg) | v ∈ VX , g ∈ G}. Two vertices (v,Hr) and (w,Hs) are adjacent if and only if
(v, hr) and (w, h′s) are adjacent in Y for some h, h′ ∈ H .
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First, Y/X̃ is a covering via the map πY/X̃ : (v, g) 7→ (v,Hg) and X̃/X is a covering via

πX̃/X : (v,Hg) 7→ v. Thus, X̃ is intermediate to Y/X because

πX̃/X ◦ πY/X̃(v, g) = v = πY/X(v, g).

To check that H is the Galois group Gal(Y/X̃), let h ∈ H . Then note

πY/X̃ ◦ h(v, g) = πY/X̃(v, hg) = (v,Hg) = πY/X̃(v, g).

2. Fix a vertex v0 in X . Consider (v0, 1) in Y . Then

H = {h ∈ G | πY/X̃(v0, h) = πY/X̃(v0, 1)}.

Since G is finite, to prove H is a subgroup we need only check it is closed under the group
operation. We denote πY/X̃(v0, 1) as (v0, H). Let h1, h2 ∈ H . Consider a path p̃ on Y
from (v0, 1) to (v0, h2). Then, h1 ◦ p̃ is a path from (v0, h1) to (v0, h1h2). Now project p̃
to X̃ to get a loop at (v0, H) and then lift this loop to Y beginning at (v0, h1) and call this
path p̃′. Since h1 ∈ G(Y/X), by Lemma 3.5 we must have h1 ◦ p̃ = p̃′ and so (v0, h1h2)
too lies above (v0, H).

To check that H = Gal(Y/X̃), we need to show that

πY/X̃(v, hg) = (v,Hg) := πY/X̃(v, g),

for any vertex v of X , h ∈ H , and g ∈ G. Let p̃ be a path from (v0, 1) to (v, g). Then h ◦ p
is a path from (v0, h) to (v, hg). Now project p̃ to a path p in X̃ ′ from (v0, H) to (v0, Hg).
Lift p to Y starting at (v0, h) and since h ∈ Gal(Y/X), it must be that (Lemma 3.5) this
lift is the same as h ◦ p, i.e., (v0, hg) also lies above (v,Hg).

�

The Fundamental Theorem for Galois field extensions guarantees us even more. If F is an
intermediate field in a Galois extension K/L, then F/L is a Galois extension if and only if
Aut(K/F ) is a normal subgroup of Gal(K/L); in fact, when F/L is Galois, its Galois group
Gal(F/L) is isomorphic to the quotient group Gal(K/L)/Gal(K/F ). Proving these facts prop-
erly requires field theory but here is the basic idea.

It can be shown that F/L is Galois if and only if σ(F ) ⊆ F for all σ ∈ Gal(K/L). So, F/L is
Galois if and only if for all τ ∈ Aut(K/F ), σ ∈ Gal(K/L), and α ∈ F , τ(σ(α)) = σ(α), i.e.,
σ−1τσ(α) = α. This means that F/L is Galois if and only if σ−1Aut(K/F )σ ⊆ Aut(K/F ) for
all σ ∈ Gal(K/L), i.e., Aut(K/F ) is normal in Gal(K/L).

Now, suppose F/L is Galois, so that for each σ ∈ Gal(K/L), we have σ(F ) ⊆ F . So,
each σ ∈ Gal(K/L) restricts to an automorphism σF of F and since L ⊆ F , σF ∈ Gal(F/L).
Thus we have a homomorphism φ : Gal(K/L) → Gal(F/L), given by φ(σ) = σF . The
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kernel of φ is the set of all automorphisms τ ∈ Gal(K/L) such that τ(α) = α for all α ∈ F ,
which by definition means that Ker(φ) = Gal(K/F ). Therefore, the image of Gal(K/L) in
Gal(F/L) under φ is isomorphic to Gal(K/L)/Gal(K/F ). By Theorem 3.3, we know that
|Gal(K/L)/Gal(K/F )| = [K : L]/[K : F ], which is equal to [F : L] since F is an intermediate
field of K/L.2 Therefore φ is surjective and so Gal(K/L)/Gal(K/F ) ∼= Gal(F/L).

In Theorem 3.11, we sketch proofs of the analogues of these facts for a Galois covering, but
we prove an auxiliary result Theorem 3.10 first.

Definition 3.9 (Conjugate coverings) Let Y/X be a Galois covering. If we have correspon-
dences of intermediate coverings and subgroups of Gal(Y/X), X̃ ↔ H and X̃ ′ ↔ H ′, then
X̃ and X̃ ′ are said to be conjugate if H and H ′ are conjugate, i.e., H ′ = gHg−1 for some
g ∈ Gal(Y/X).

Theorem 3.10 Let Y/X be a Galois covering. Two intermediate coverings Y/X are conjugate
if and only if they are covering isomorphic.

Proof. Suppose X̃ and X̃ ′ are conjugate. Let H = Gal(Y/X̃), then Gal(Y/X̃ ′) = g0Hg
−1
0 for

some g0 ∈ G = Gal(Y/X). The vertices of X̃ are {(v,Hg) | v ∈ VX , g ∈ G} and the vertices
of X̃ ′ are {(v,H ′g) | v ∈ VX , g ∈ G} = {(v,H ′g0g) | v ∈ VX , g ∈ G}. We can let the covering
isomorphism be σ : (v,Hg) 7→ (v,H ′g0g) from X̃ to X̃ ′. To check this is well-defined, suppose
Hg1 = Hg2; then g2 = hg1 for some h ∈ H and so H ′g0g2 = g0Hhg1 = g0Hg1 = H ′g0g1.
Further,

πX̃′/X ◦ σ(v,Hg) = v = πX̃/X(v,Hg).

The other details also work out.

Conversely, suppose σ : X̃ → X̃ ′ is a covering isomorphism. Fix a vertex v0 in X .
Then consider (v0, 1) in Y and its projection (v0, H) in X̃ . Then let ṽ′0 be σ(v0, H). Since
πX̃/X = πX̃′/X ◦ σ, it follows that ṽ′0 also lies above v0 and so there exists (v0, g0) ∈ Y such that

πY/X̃′(v0, g0) = ṽ′0. We might suspect Gal(Y/X̃ ′) = g0Hg
−1
0 , which works but we won’t verify

this here. �

Theorem 3.11 Suppose X̃ is an intermediate covering of a Galois covering Y/X with a corre-
sponding subgroup H ≤ G = Gal(Y/X). Then X̃/X is a Galois covering if and only if H is
normal in G. Further, Gal(X̃/X) ∼= G/H .

Proof. Let H be normal in G. The vertices of X̃ are (v,Hr), v ∈ Vx, r ∈ G. The cosets Hg
act on X̃ by sending (v,Hr) to (v,HgHr) = (v,Hgr). Clearly this action is a bijection on the
vertices of X̃ . It also preserves edges: suppose there is an edge between (v1, Hr1) and (v2, Hr2);

2It is easily verified that if {li} is a basis for F over L and {fj} is a basis for K over F , then {lifj} is a basis for
K over L.
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then by Theorem 3.8 there is an edge between (v, h1r1) and (v, h2r2) in Y for some h1, h2 ∈ H .
The action of a coset Hg takes the vertices to (v1, Hgr1) and (v2, Hgr2). Now the action of
g takes (v, h1r1) and (v, h2r2) to (v, gh1r1) and (v, gh2r2) while preserving the edge between
them; letting h′i = ghig

−1 ∈ H / G, we see there is an edge between (v, h′1gr1) and (v, h′2gr2),
implying there has to be an edge between (v1, Hgr1) and (v2, Hgr2).

For the converse, suppose X̃/X is Galois and let σ be an automorphism in Gal(X̃/X). Then
since σ can also be viewed as a covering isomorphism from X̃ to X̃ , using Theorem 3.10 (and
in particular its proof), we see that g0Hg−10 = H for some g0 ∈ G, and as σ runs through
Gal(X̃/X), g0 runs through the right coset representatives of H . Thus H is normal in G. �

4 Artin L-Function

We are now approaching the analogue of the Artin L-function, which will lead to the graph-
theoretic Riemann hypothesis. But, to begin with, we need to delve deeper into the connection
between graph coverings and number fields. We first see how the Frobenius automorphism for
a graph covering is defined, beginning with a short interlude on the basics of algebraic number
theory. The interested reader might like to refer to [8] for an introduction to algebraic number
theory requiring minimal algebraic background and [7, 6, 9] for more abstract approaches. On a
related note, for simplicity here we will only consider finite field extensions K/L with L = Q,
but all the theory generalizes to when even L is a number field strictly above Q.

4.1 Primes in Coverings

Recall that a number field is a finite field extension of Q. Within a number field K, lives a
subring OK called the ring of integers of K that plays the same role as the integers Z do for
the rationals Q. This is the reason for the name “number field”: we can generalize much of the
beautiful arithmetic of Q to number fields. The idea of generalization is key here, because, for
instance, the usual Fundamental Theorem of Arithmetic (FTA) of Z usually fails miserably in
number fields. The classic example is that in Q[

√
−5], 6 can be factored into irreducibles as both

2 · 3 and (1 −
√
−5)(1 +

√
−5). This is fixed by instead considering the ideals of OK . Before

going further, let us first define what is OK , for which we need a few definitions pertaining to
integrality. Rings for our purposes are commutative with unity.

Definition 4.1 (Integrality) Let A be a subring of a ring B. Then an element b ∈ B is integral
over A if there exist n ∈ Z≥1 and ai ∈ A such that

bn + an−1b
n−1 + · · ·+ a0 = 0.

In other words there exists a monic p(x) ∈ A[x] such that p(b) = 0. The integral closure of A
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in B is the set of elements in B that are integral over A. Further, A is integrally closed if the
integral closure of A in its field of fractions is again A.

It follows that A is contained in its integral closure since an element α ∈ A is a root of the
polynomial x − α. Also, if you are familiar with the Rational Roots theorem, notice that it
implies that Z is integrally closed. Lastly, while it is not obvious from the definition, using basic
module theory it can be shown that the integral closure of a ring is yet another ring [1, pp. 21].

Definition 4.2 (Ring of integers) Let K be a number field. The ring of integers OK is the inte-
gral closure of Z in K.

Just like Q is the field of fractions of Z, it is easy to show that K is the field of fractions
of OK . We also fully understand the structure of OK when K is a quadratic field Q(

√
d) for

some squarefree integer d. For instance, when d = 2, just as one would first guess, we have
that OK = Z[

√
2], i.e., every element of the ring of integers of Q(

√
2) is of the form a + b

√
2,

for some a, b ∈ Z. The situation is not as straightforward for all quadratic number fields; for
instance, the ring of integers of Q[

√
5] is Z[1+

√
5

2
] rather than Z[

√
5]. In general, OK is usually

not generated by a single element over Z (other than 1) but we can always find a finite Z-basis
for OK , i.e., OK is always a finitely generated Z-module.

Now it turns out that OK is a very special kind of ring called a Dedekind domain. It will be
too long a digression to formally introduce Dedekind domains here and so we will take some of
their fundamental properties for granted here; the beautiful theory of Dedekind domains can be
found in most algebraic number theory texts and we especially recommend [6] for a first reading.
The property we are most interested in is the following:

Theorem 4.3 (FTA for Dedekind domains) Let A be a Dedekind domain. Then every proper
nonzero ideal a of A can be written as

a = pe11 . . . pekk ,

where the pi are distinct prime ideals and ei > 0 are integers. Furthermore, this expression is
unique.

This unique factorization of nonzero ideals in OK helps us to answer one of the fundamental
questions of algebraic number theory. We know that the ideal generated by a prime p in Z is a
prime ideal of Z and so it cannot be factored into two proper ideals of Z different from pZ; but
what about pOK , the ideal generated by p inOK? For better or worse, pOK is usually not prime.
The next theorem explains the basic structure of the factorization of pOK .

Theorem 4.4 (e-f -g Theorem) Let K be a number field of degree n. Let p ∈ Z be prime having
the factorization

(1) pOK = pe11 . . . pegg ,

with the pi distinct prime ideals and ei > 0. Then
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• for each 1 ≤ i ≤ g, Nm pi := [OK : pi] = pfi for some fi ∈ Z>0, and

• n =
∑g

i=1 eifi.

The prime ideals pi in the factorization of p are said to lie above p, denoted pi | p. Here Nm pi is
the norm of pi and we will see that projection map π in a covering is sort of analogous to it. We
also have the norm of an element α ∈ K which, when K/Q is a Galois extension, is defined as
follows (we won’t require a more general definition):

(2) Nmα =
∏

σ∈Gal(K/Q)

σ(x).

For instance, in a quadratic field Q(
√
d), we saw the Galois group consists of the trivial automor-

phism and the automorphism that sends
√
d 7→ −

√
d. So the norm of an element α = a+ b

√
d,

a, b ∈ Q, is
Nmα = (a+ b

√
d)(a− b

√
d) = a2 − b2d.

If α ∈ OK , we have the useful fact that Nmα ∈ Z. This is easy to see when K/Q is Galois:
observe that for any τ ∈ Gal(K/Q), applying τ to the norm of α ∈ OK corresponds to simply
permuting the σ’s in (2), so that τ Nmα is equal to Nmα, implying that Nmα ∈ Q. Since
α ∈ OK , each of the conjugates σ(α) also belong to OK and therefore Nmα ∈ Q ∩ OK = Z
(Rational Roots theorem).

Let us consider some examples of Theorem 4.4. In K = Q(
√
3), 5OK = (5).3

On the other hand in K = Q(
√
5), 5OK = (

√
5)2. Lastly, in K = Q( 3

√
2),

5OK = (5, 3
√
2 + 2)(5, 3

√
2
2
+ 3 3
√
2 + 4). These prime factorizations are not obvious and follow

from a standard result of algebraic number theory (see [6, pp. 61] or [11, pp. 102]). Observe
that in the first example, e = 1, f = 2, g = 1, while in the second one e = 2, f = 1, g = 1, and
in the third one ei = 1, fi = 1, g = 2. The first example will be most relevant for us since the
number field K involved is Galois over Q and the prime 5 is unramified in K: the exponent e is
not greater than 1 for any of the primes (just one here) in the factorization.

We now turn to defining primes in graph coverings.

Definition 4.5 (Primitive/Prime path) Let C = a1 . . . as (the ai being edges) be a closed path
with no backtrack (aj+1 6= a−1j for any 1 ≤ j < s) and no tail (as 6= a−11 ). Then the closed path
C is called a primitive or prime path if C 6= Df for any path D and integer f > 1, i.e., C is not
a repeated cycle. If the beginning and end vertex of a primitive path C is v, then we say C is
based at v.

We will consider two paths with opposite directions to be distinct from each other. The condi-
tion that C 6= Df is our notion of “primeness”. Now, if we have a primitive path C = a1 . . . as,
then we can obtain a new primitive path C ′ = a2 . . . asa1 by simply changing which vertex we

3By (a1, a2, . . . , an) we mean the ideal generated by a1, a2, . . . , an in the specified ring.
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view as the initial vertex of the path. But morally we should not have to think C ′ as being differ-
ent from C, just like we don’t distinguish between prime ideals that are generated by associates.4

Therefore, we create an equivalence relation on the set of primitive paths that “forgets” the initial
vertex of a primitive path.

Definition 4.6 (Prime) A prime in a graph X is an equivalence class [C], with C = a1 . . . as
a primitive path, under the relation C ′ ∼ C if C ′ = aπks (1) . . . aπks (s) where k ∈ Z
and πs is the permutation (1 2 · · · s). In other words, a prime is a set of primitive paths
{a1 . . . as, a2 . . . asa1, . . . , asa1 . . . as−1}.

a

b

c d

(a) The tetrahedron K4

a′

d′′

c′

b′

d′

a′′

b′′

c′′

(b) The cube as a covering of K4

Figure 4.1

For instance, in K4 (Figure 4.1) some primes, specified by vertices, are [〈b, c, d, b〉],
[〈b, a, c, d, b〉], and [〈b, a, d, b〉]. However, [〈b, a, b, d, c, b〉] is not prime since it has backtrack
and [〈b, a, d, b, a, d, b〉] is not prime since it is the same as [〈b, a, d, b〉]2. Generally, the number of
primes in a graph is infinite. In K4, one infinite family of primes is [〈a, b〉〈b, c, d, b〉n〈b, a〉] for
n ∈ Z≥1. One case where we do have a finite number of primes is the cycle graph Cn, n ∈ Z≥3;
it has exactly two primes (because we consider the directions too).

Unfortunately, notice that there is no natural way to define a well-defined product of two
primes, and so we have no hope for finding a unique prime factorization for coverings. However,
let us not be disheartened just yet! We will see that an analog of the e-f -g Theorem (or more
accurately an f -g Theorem) holds for coverings. An immediate problem we have with absence
of a result like Theorem 4.3 for a covering Y/X is how to define when a prime [D] of Y lies
above a prime [C] of X? We use the projection map πY/X . Indeed, if [D] is a prime in Y , then
the reader should convince themselves that πY/X(D) will not have backtrack or tail. But there
may exist a prime C and positive integer f such that πY/X(D) = Cf (if πY/X(D) is primitive,
then f = 1). This situation is described by saying [D] lies above [C], or [D] | [C], and f is called
the residual degree of D, denoted fY/X(D). In a Galois covering Y/X , observe that if [D] and
[D]′ lie over [C] with residual degrees f and f ′, then f = f ′; informally, we can apply some

4Recall two elements a and b of a ring are called associates if a = bu for some unit u.
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σ ∈ Gal(Y/X) so that σ ◦ D is based at the same vertex as D and so the first edge of σ ◦ D is
the same as that of D′, and continuing in this way, they must have the same length and thus have
the same residual degree; we will see that the corresponding statement holds for Galois number
fields too.

Consider the cube and K4 in Figure 4.1. The prime path D = 〈c′, d′′, b′, c′′, d′, b′′, c′〉 in Y
lies above the prime path C = 〈c, d, b, c〉 in X , with fY/X(D) = 2. Another example is that
D1 = 〈c′, a′, d′, b′′, c′〉 lies above C = 〈c, a, d, b, c〉; also, D2 = 〈c′′, a′′, d′′, b′, c′′〉 is another
prime path inequivalent to D1 over C. In both these cases, the residual degree is 1 and we can
see that there is no other prime lying over [C], so that 2 · 1 = 2 is equal to the degree of the
covering, an example of the f -g Theorem in action! The proof of the f -g Theorem will follow
quite easily from the theory of the Frobenius automorphism, which we now develop.

4.2 Frobenius Automorphism

Suppose we a have a number field K/Q. Let p be a prime ideal of OK lying above a rational
prime p ∈ Z. One of the defining axioms of a Dedekind domain is that every nonzero prime ideal
is maximal. So the integral domain Fp = OK/p is in fact a field and has Fp = Z/pZ as a subfield.
We now argue that Fp is a Galois extension of Fp, i.e., |Aut(Fp/Fp)| = [Fp : Fp] = fK/Q(p)
by showing that A := Aut(Fp/Fp) has an element of order f := fK/Q(p). Here we are taking
for granted the general fact that the number of L-automorphisms of a finite (separable) field
extension K/L cannot exceed the degree of the extension (see [3, pp. 240-241]).

First note that the mapping σ : x→ xp on Fp is a member of A since for any a ∈ Fp, we have
ap = a (Fermat’s Little theorem) and for any x, y ∈ Fp

(xy)p = xpyp and (x+ y)p = xp + yp,

where the second equality holds because Fp has characteristic p. It is also easy to show that
σ must be injective and thus bijective. Let n be the order of σ in the group A, so that
σn(x) = xp

n
= x for all x ∈ Fp. Further, since |Fp| = pf , and F×p is cyclic,5 there exists

α ∈ Fp having multiplicative order pf − 1. So we have σn(α) = αp
n
= α, implying that

pf − 1 | pn − 1. But pf − 1 | pn − 1 is true only if f | n; therefore n ≥ f . Lastly, simply
because F×p is a group of order pf − 1, σf (x) = xp

f
= x for any x ∈ Fp; thus the order of σ is

f . Therefore, since A has order at most f , it is cyclic of order f with generator σ, and so Fp/Fp
is a Galois extension (Theorem 3.3). The generator σ is called the Frobenius element Frobp of
Gal(Fp/Fp) = Aut(Fp/Fp).

Now also assume K/Q is a Galois extension with Galois group G. For any σ ∈ G, it is a
quick verification that σ(p) is also a prime ideal, and so G acts on the set of prime ideals of OK .
Let Zp = {σ ∈ Gal(K/Q) | σ(p) = p} denote the stabilizer of this action; Zp is called the
decomposition group of p. Notice that we have a natural homomorphism ϕ : Zp → Gal(Fp/Fp)

5Recall that the group of units of a finite field is cyclic.
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− for each σ ∈ Zp, ϕ(σ) sends α mod p to σ(α) mod p. With a little work, it can be shown that
when p is unramified over p then ϕ is an isomorphism (see [11, pp. 104-106]). A consequence
is that when p is unramified over p, we can lift the Frobenius element Frobp to Zp, and so Zp is
cyclic with generator Frobp.

We can also argue that the Galois group G acts transitively on all prime ideals that lie above
p. Suppose q is a prime ideal different than p lying above p and τ(p) 6= q for any τ ∈ G.
Then by the Chinese Remainder theorem (since nonzero prime ideals in a Dedekind domain are
maximal),6 we can find an element α ∈ q not belonging to any of the prime ideals τ(p), for any
τ ∈ G. So,

a := NmL/Q(α) =
∏
τ∈G

τ(α) ∈ q ∩ Z = pZ,

and since pZ ⊆ p, we infer that a ∈ p. Since p is prime, it follows τ(α) ∈ p for some τ ∈ G,
contradicting α 6∈ τ−1(p). ThereforeG acts transitively on the prime ideals lying above p. An im-
plication of transitivity is that, if q and p are two prime ideals above pwith q = τ(p), then q and p
will have conjugate decomposition groupsZq = τZpτ

−1; as a consequence Frobq = τ Frobp τ
−1.

We have yet another application of transitivity. Using Theorem 4.3, let

pOK = pe11 . . . pegg ,

since pi = τi(p1) for some τi ∈ G, by applying τi to the factorization, we see that ei = e1
and by a similar argument fi = f1. So by the e-f -g theorem, efg = [K : Q]. Therefore
Galois extensions are quite special in this regard and the analogous phenomena happens for
graph coverings, already visible in the example with the cube and tetrahedron above.

Back to coverings, the Frobenius automorphism is defined in a very constructive manner but
helps us prove all of the analogs of the properties of number fields just discussed.

Definition 4.7 (Frobenius automorphism) Let Y/X be a Galois covering. Let C be a primitive
path in X based at the vertex a. Let D be a primitive path in Y over C, and let D be based at
vertex (a, g). Suppose the unique lift of C to Y that starts at (a, g) terminates at (a, h). Then the
Frobenius automorphism associated to D is

FrobD = hg−1 ∈ Gal(Y/X).

Notice that we have only defined a Frobenius automorphism associated with a primitive path
rather than a prime, but in Theorem 4.8 we will see that this definition gives us a well-defined
Frobenius automorphism for a prime as well.

ConsiderK4 and the cube (Figure 4.1), and denote the nonidentity Galois automorphism of the
cube by τ . Let D = 〈c′, d′′, b′′, c′′, d′, b′, c′〉 in Y which lies above the prime path C = 〈c, d, b, c〉.

6Recall that the CRT for a ring R states that if i1, i2, . . . , ik are pairwise relatively prime ideals, then
i1 ∩ i2 ∩ · · · ∩ ik = i1i2 . . . ik and so by the Isomorphism theorem R/(i1i2 . . . ik) ∼= R/i1 ×R/i2 × · · · ×R/ik.
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Then, since c′ ≡ (c, 1) and c′′ ≡ (c, τ), we see that FrobD = τ · 1−1 = τ . If we instead consider
D′ = 〈c′′, d′, b′, c′, d′′, b′′, c′′〉 which also is in [D], we get FrobD′ = 1 · τ−1 = τ = FrobD.

The decomposition group ZD of a primeD in a Galois covering Y/X is defined almost exactly
as for number fields:

ZD = {σ ∈ Gal(Y/X) | [σ ◦D] = [D]}.

In this case, it is easily verified that this definition gives us a well-defined group ZD associated
to a prime.

Continuing with the example above, we see that ZD = Gal(Y/X) since applying τ (besides
the identity automorphism) to D gives us D′, which belongs to [D]; similarly ZD′ = Gal(Y/X).
Clearly the decomposition group need not be the whole Galois group. For instance, if
E = 〈a′, b′, c′, d′′, a′〉 , then ZE is just the trivial subgroup since τ(E) = 〈a′′, b′′, c′′, d′, a′′〉 6∈ [E].
This last example also illustrates that just like for a Galois number field, the Galois group of a
Galois covering acts transitively on the primes lying above the same prime; in fact, this follows
directly from the fact that the Galois group acts transitively on each fiber (Proposition 3.4).

We now prove the properties of the Frobenius automorphism, giving us an f -g theorem for
coverings, which we can with some imagination interpret as an e-f -g theorem because our cov-
erings are unramified and so e is always 1.

Theorem 4.8 Let Y/X be a d-sheeted Galois graph covering with Galois group G and let [D]
be a prime in Y . Then

1. If D′ = σ ◦D for some σ ∈ G, then

FrobD′ = σ FrobD σ
−1.

2. For all D′ ∈ [D], FrobD′ = FrobD. Thus FrobY/X([D]) is well-defined.

3. The decomposition group ZD is cyclic of order f = fY/X(D) and is generated by FrobD.

4. If g is the number of primes in X over a prime [C], then fg = d, where f is the common
residual degree of primes over f .

Proof.

1. Let D be based at (a, g0), so that D′ is based at (a, σg0), and let C lie below D. Then
suppose the lift C̃ of C starting at (a, g0) ends at (a, g1). So FrobD = g1g

−1
0 . Since Y/X is

Galois, the lift C̃ ′ of C starting at (a, σg0) is the same as σ ◦ C̃, so that C̃ ′ ends at (a, σg1).
Thus, FrobD′ = (σg1)(σg0)

−1 = σ(g1g
−1
0 )σ−1 = σ FrobD σ

−1.

2. To prove this cleanly, it’s useful to introduce a normalized Frobenius automorphism λ. For
a path p in X , suppose the lift of p starting on sheet 1 ends on sheet g; let λ(p) = g. Note
that λ is multiplicative: λ(p1p2) = λ(p1)λ(p2).
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With same notation as the previous part, suppose D′ ∈ [D] and is based at (b, h0). Then
b is a vertex of C, and splits C into paths: C = p1p2, where p1 ends at b and p2 begins at
b. So D′ is a prime above C ′ = p1p2. Suppose the lift C̃ ′ of C ′ starting at (b, h0) ends at
(b, h1). We have to show h1h

−1
0 = g1g

−1
0 . Since D lies above Cf , it can be decomposed

into f paths, each lying above C; let (b, h0) occur in the r-th component of D. Let Ũ be a
path from (a, 1) to (a, g0) and U its projection to X . Then, we have

g0 = λ(U), g1 = λ(UC), h0 = λ(UCr−1p1), and h1 = λ(UCrp1).

Thus
g1g
−1
0 = λ(UC)λ(U)−1 = λ(U)λ(C)λ(U)−1,

and
h1h

−1
0 = λ(UCrp1)λ(UC

r−1p1)
−1 = λ(U)λ(C)λ(U)−1.

Therefore g1g−10 = h1h
−1
0 .

3. Continuing with the same notation, we have

FrobjD = (g1g
−1
0 )j = λ(U)λ(C)jλ(U)−1.

Now, λ(C)j = 1 implies that Cj lifts to a closed path in Y , and since the residual degrees
of primes over C are the same, it must be that f | j, and so f is the order of FrobD. Since
σ ◦D ∈ [D] if and only if σ ◦D is a cyclic permutation of D, and since G acts transitively
on fibers, |ZD| = fY/X(D). Since ZD has order f and FrobD ∈ ZD also has order f , it
follows ZD is cyclic with generator FrobD. This fact combined with part 1, implies that
primes in Y lying above the same prime in X have conjugate decomposition groups.

4. Since G acts transitively on the g primes lying above the same prime and the size of the
decomposition group (otherwise known as the stabilizer) has size f , by the orbit-stabilizer
theorem we have g = |G| /f = d/f .

�

The Frobenius automorphism, besides being instrumental in helping us define the Artin-Ihara
L-function (as we will soon see), also helps us construct special kinds of Galois coverings. Here
we illustrate the construction with an example, but it readily generalizes.

We start with X = K4 − e (i.e., K4 with one edge deleted) and a cubic covering Y3 in Figure
4.2. The dotted edges in X together represent a spanning tree. Observe that Y3 is not Galois
over X (for instance, consider the fibers of a and d). We will now minimally “extend” Y3 so
that it becomes Galois over X . More precisely, we will find a covering Yn of X such that Y3 is
an intermediate covering of Yn/X and there is no Galois covering of X strictly intermediate to
Yn/Y3. Since Y3 is cubic and Yn/Y3 is at least quadratic, Yn will be at least 6-sheeted over X ,
i.e., n ≥ 6. We will see that n = 6 suffices. The reader familiar with Galois theory will recognize
that our characterization of Yn is exactly analogous to the notion of a Galois closure.
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e1 e2

(a) X = K4 − e

b′′

a′′

c′′

b′′′

d′′

c′

c′′′

d′′′ a′′′

b′

d′ a′

(b) Y3, a cubic non-Galois covering of X

Figure 4.2

First let us label our sheets of Y3 so that a′ belongs to sheet 1, a′′′ belongs to sheet 3, and so
on. We consider how edges of X not included in its spanning tree lift to Y3. The edge e1 = 〈b, d〉
lifts to 〈b′, d′〉, 〈b′′, d′′′〉, and 〈b′′′, d′′〉. So, we see that, in cycle form, (1)(2 3) represents how e1
lifts to Y3. Similarly, (1 2)(3) represents how e2 lifts to Y3. The elements {(2 3), (1 2)} viewed
as elements of S3, generate S3. It can be show that this implies S3 is the Galois group of Yn/X .
Since |S3| = 6, we have that n = 6.

We can recover Y6 using the information that its Galois group is S3 and that Y3 is an interme-
diate covering. We begin by making six copies of the spanning tree of X , so that it remains to
only lift e1 and e2. It can be shown that the permutations (2 3) and (1 2) are in fact λ(e1) and
λ(e2) respectively, where λ is the normalized Frobenius automorphism for Y6/X (from the proof
of Theorem 4.8). So the lift of e1 to Y6 starting at on sheet (1) ends on sheet (2 3), i.e., there
is an edge between (b, (1)) and (d, (2 3)). What about the lift of e1 starting at some other sheet
labelled by σ ∈ S6? Since Y6 is to be Galois over X , the lift of e1 starting at (b, σ) = σ((b, (1)))
must terminate at σ((d, (2 3))) = (d, σ ◦ (2 3)). Thus to lift e1 to Y6, we add the following edges
to the six copies of the spanning tree of X:

(b, (1))→ (d, (2 3)), (b, (2 3))→ (d, (1)), (b, (1 3))→ (d, (1 3 2)),

(b, (1 3 2))→ (d, (1 3)), (b, (1 2))→ (d, (1 2 3)), (b, (1 2 3))→ (d, (1 2)).

Similarly, to lift e2 we add the following edges:

(d, (1))→ (c, (1 2)), (d, (1 2))→ (c, (1)), (d, (1 3))→ (c, (1 2 3)),
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(d, (1 2 3))→ (c, (1 3)), (d, (2 3))→ (c, (1 3 2)), (d, (1 3 2))→ (c, (2 3)).

All in all, if we make the following identifications:

v1 = (v, (1)), v2 = (v, (1 3)), v3 = (v, (1 3 2)),

v4 = (v, (2 3)), v5 = (v, (1 2 3)), v6 = (v, (1 2)),

then we get Y6 in Figure 4.3.

a2

c2

d5
b6

a6

c6

d1

b4

a4

c4
d3

b2

d2

c5

a5
b5

d6

c1

a1

b1

d4
c3

a3

b3

Figure 4.3: Y6, a 6-sheeted Galois covering of K4 − e.

Before moving on, let us take this opportunity to apply some of our Galois theory for cover-
ings. For instance, what is the subgroup H3 of S3 that corresponds to the intermediate covering
Y3 in Y6/X? From the proof of part 2 in Theorem 3.8, we see that h ∈ H3 if and only if
πY6/Y3(a, h) = πY6/Y3(a, (1)). Since we have not specified a projection map from Y6 to Y3, we
will not have a well-defined subgroup H3 corresponding to Y3. However, for the time being
suppose that a1 projects to a′, so that d1 projects to d′. Then since b4 is adjacent to d1, and b′

is the only vertex in the fiber of b adjacent to d′, we conclude that a4 must also project to a′,
so that H3 = {(1), (2 3)} in this case. Reasoning similarly, we find that if instead a1 projects
to a′′ then H ′3 = {(1), (1 2)} and if it projects to a′′′ then H ′′3 = {(1), (1 3)}. Indeed, each of
three projection maps give us three coverings Y6/Y3 which are conjugate to each other (Defi-
nition 3.9), since H ′3 = (1 3 2)H3(1 3 2)

−1 and H ′′3 = (1 2 3)H3(1 2 3)
−1. The fact that Y3/X

is non-Galois is reflected in the fact that H3 is not normal in S3 (Theorem 3.11). Next, let us
produce an intermediate covering of Y6/X that is also Galois over X . We use the subgroup
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H2 = {(1), (1 2 3), (1 3 2)} which, being a union of two conjugacy classes, is normal in S3.
Since [S3 : H2] = 2, we make 2 copies of the spanning tree of X; also, let us denote the desired
covering by Y2. Then we add edges according to the proof of part 1 in Theorem 3.8. So, for
instance since there is an edge between b1 = (b, (1)) and d4 = (d, (2 3)), there has to be an
edge between (b,H2) and (d,H2(2 3)) in Y2. Repeating this process, we add four edges to the
spanning trees to get the covering in Figure 4.4, which should not be surprising!

a′

d′′

c′

b′

d′

a′′

b′′

c′′

Figure 4.4: The cube without 2 edges as a Galois covering of K4 − e.

4.3 Artin-Ihara L-function

The Artin L-function immensely generalizes the Riemann zeta function and helps us better un-
derstand the properties of the Dedekind zeta function. But there are deeper reasons for why the
Artin L-function is important. For example, the Artin L-function plays an important role in the
proof of the Chebotarev Density Theorem (see [13]), which in its simplest form roughly tells
us about the density of primes that split in a finite Galois extension of number fields; this also
has a graph covering analogue (see [12, Ch. 22]). Here, however, we will content ourselves
with the definition of the Artin L-function and its graph theoretic analogue, along with some of
its basic properties. The reader might like to refer to [10] for more information about the Artin
L-function.

To define the Artin L-function, we need the definition of a representation. Later, we will also
be appealing to basic theorems of representation theory, proofs of which can be found in any
good reference on representation theory such as [4].

Let V be a finite dimensional vector space over C. A representation (V, ρ) of a finite group
G is a group homomorphism ρ : G → GL(V ).7 The degree dρ of a representation ρ is the
dimension of V . A subrepresentation of a representation (ρ, V ) is a representation (W, ρ |W ),
where W ⊆ V is a subspace which is ρ-invariant.

7Recall that GL(V ) is the group of bijective linear maps from V to V .
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Definition 4.9 (Artin L-function) Let K/Q be a Galois number field and let (V, ρ) be a repre-
sentation of Gal(K/Q). The Artin L-function L(s, ρ,K/Q) is then

(3) L(s, ρ,K/Q) =
∏
p

det[I − ρ(Frobp)p
−s]−1,

where the product runs over all primes p ∈ Z which are unramified in K (i.e., e = 1) and p is
any prime ideal lying above p.

The product in (3) is well-defined since if q is another prime lying above p, we know that Frobq

and Frobp are conjugates, so that the characteristic polynomial fp(x) = det[Ix − ρ(Frobp)p
−s]

remains unchanged (the characteristic polynomial is basis-invariant), and therefore so do the
terms fp(1) in the product.

If we take ρ = 1 in L(s, ρ,K/Q), the ρ(Frobp) term effectively has no contribution and thus
the definition becomes independent of the field K, giving us the familiar Euler product for the
Riemann zeta function. More generally, if we take ρ = 1 in L(s, ρ,K/L), whereK/L is a Galois
extension of number fields, we get the Dedekind zeta function, a generalization of the Riemann
zeta function for number fields.

The analogue for coverings is defined almost the same way. Let Y/X be a Galois covering
with a representation (V, ρ) of Gal(V, ρ). Let ν(C) denote the length of a path C. The Artin-
Ihara L-function L(s, ρ, Y/X) is defined as

(4) L(s, ρ, Y/X) =
∏
[C]

det[I − ρ(FrobD)sν(C)]−1,

where the product runs over all primes [C] of X and D is any prime path lying above C. Com-
paring (3) and (4), the difference between the terms p−s and sν(C) is conspicuous. Well, to get a
function that is not a mere formal sum and has analytic properties, we have ν(C) rather than just
C. So why not have ν(C)−s? A complete answer to this requires looking at the details proofs of
properties we desire L(s, ρ, Y/X) to have (e.g., see [12, Theorem 18.8, Ch. 18]), but here is the
underlying idea. Every n ∈ Z is of the form

∏
p p

ep , for primes p ∈ Z and some ep ∈ Z≥0. On
the other hand, the length of a closed path T (with no backtrack and tail) is not necessarily of the
form ν(T ) = ν(C)j for some prime [C], j ∈ Z≥0, but is instead of the form ν(T ) = j · ν(C).
In other words, the difference is a result of the fact that the norm map NmK/Q is multiplicative
while the length function ν is additive.

Before we consider some basic properties of L(s, ρ, Y/X), we need a couple of ways to create
new representations.

Given two representations (V, ρ) and (W,σ), we can get a new representation by defining
their direct sum (V ⊕ W, ρ ⊕ σ) − the vector space V ⊕ W is the usual direct sum and
ρ⊕ σ ∈ GL(V ⊕W ) is such that ρ⊕ σ((v, w)) = (ρ(v), σ(w)).

Next, given a representation (W, ρ) of a subgroup H in a group G, we can induce a represen-
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tation (V, IndGH ρ) of G, by letting

V = {φ : G→ W | φ(hg) = ρ(h)φ(g), for all h ∈ H, g ∈ G},

and
IndGH(g)(f) : x 7→ f(xg),

for all x, g ∈ G.

In the following, we only outline the proofs of the first two parts since proving the third part
is substantially harder (see [12, Ch. 19]). The corresponding properties and proofs hold for the
Artin L-function L(s, ρ,K/Q) too.

Theorem 4.10 Let Y/X be a Galois covering with group G.

1. If ρ1 and ρ2 are representations of G, then

L(s, ρ1 ⊕ ρ2, Y/X) = L(s, ρ1, Y/X)L(s, ρ2, Y/X).

2. Let X̃ be an intermediate covering of Y/X , such that X̃/X is Galois. Suppose ρ is a
representation of H = Gal(X̃/X); we can consider the representation ρ̃ of G defined by
ρ̃(g) = ρ(Hg). Then

L(s, ρ̃, Y/X) = L(s, ρ, X̃/X).

3. If X̃ is intermediate to Y/X and ρ is a representation of H = Gal(Y/X̃) ≤ Gal(Y/X),
then

L(s, IndGH ρ, Y/X) = L(s, ρ, Y/X̃).

Proof of [1,2].

1. In block-matrix form,

ρ1 ⊕ ρ2 =
[
ρ1 0
0 ρ2

]
.

So,

I − (ρ1 ⊕ ρ2)(FrobD)sν(C) =

[
Id(ρ1) − ρ1(FrobD)sν(C) 0

0 Id(ρ2) − ρ2(FrobD)sν(C)

]
.

So, since the last matrix is the same as[
Id(ρ1) − ρ1(FrobD)sν(C) 0

0 Id(ρ2)

] [
Id(ρ1) 0
0 Id(ρ2) − ρ2(FrobD)sν(C)

]
,

and because the determinant is multiplicative, the result follows.

2. This one follows directly, if we use that FrobC̃(X̃/X) = H FrobD(Y/X), where C̃ is a
prime of X̃ lying above C. Showing that FrobC̃(X̃/X) = H FrobD(Y/X) is straightfor-
ward and we omit the verification here.
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Now, consider what happens to L(s, ρ, Y/X) for the trivial representation ρ = 1. We see that
ζX(s) = L(s, 1, Y/X) is a well-defined function associated to a graph X and is called the Ihara
zeta function of X . Explicitly,

ζX(s) =
∏
[P ]

(1− sν(P ))−1,

with the product running over the primes of X .

We can use the Artin-Ihara L-function L(s, ρ, Y/X) to get a factorization of the Ihara zeta
function ζY using a theorem of representation theory. An irreducible representation is a repre-
sentation which has no nontrivial subrepresentations. A representation (V, ρ) is a unitary repre-
sentation if ρ(g) is unitary for all g ∈ G, i.e., in matrix notation, ρ(g)ρ(g)

T
= Idρ . For a finite

group G, let Ĝ represent the set of irreducible unitary representations of G.

Then, we have the regular representation for the representation induced by the trivial repre-
sentation of the trivial subgroup (see [4, Ch. 5]):

(5) IndG{e} 1
∼=
⊕
ρ∈Ĝ

dρρ,

where, as before, dρ denotes the degree of ρ.

So, taking X̃ = Y and ρ = 1 in part 3 of Theorem 4.10 , we get

ζY (s) = L(s, 1, Y/Y )

= L(s, IndG{e} 1, Y/X)

=
∏
ρ∈Ĝ

L(s, ρ, Y/X)dρ ,(6)

where we have used (5) along with part 1 of Theorem 4.10 in the last step. Here G is Gal(Y/X).
We can similarly factor the Dedekind zeta function using the Artin L-function. Notice that since
1 ∈ Ĝ and ζX(s) = L(s, 1, Y/X), we see that for a Galois covering Y/X , ζX(s) | ζY (s) as
polynomials. This divisibility relation in fact holds for non-Galois coverings Y/X too (see [12,
Ch. 2]).

Before we consider an example, notice that the definition of L(s, ρ, Y/X) is not particularly
useful for explicit computation since it is generally an infinite product. A much simpler formula
for L(s, ρ, Y/X) can be proved, which we now state. For a representation ρ of Galois covering
Y/X , let the Artinized adjacency matrix Aρ be

Aρ =
∑

σ∈Gal(Y/X)

A(σ)⊗ ρ(σ),
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where A(σ) is the matrix with entries A(σ)u,v which counts the number of undirected edges
between (u, 1) and (v, σ) in Y , for vertices u and v in X . Here ⊗ is as usual the tensor product.8

Also, letQρ beQ⊗Idρ , whereQ is the diagonal matrix with entriesQv = deg(v)−1 for vertices
v in X . Then,

(7) L(s, ρ, Y/X)−1 = (1− s2)(r−1)dρ det(I − Aρs+Qρs
2),

where r = |EX | − |VX |+ 1. A proof can be found in [12, Ch. 11].

a

b

c d

(a) The tetrahedron K4

a′

d′

c′′

b′

d′′

a′′

b′′

c′

(b) The cube as a covering of K4

Figure 4.5

Let us compute the Artin-Ihara L-function of the cube as a covering of K4 (Figure 4.5) using
the determinant formula. Here Gal(Y/X) = {1, τ}, where τ exchanges v′ with v′′ for each vertex
v of X = K4, and is isomorphic to Z/2Z. The group Z/2Z has two irreducible representations,
the trivial representation 1 and the representation ρ : 1 7→ 1, τ 7→ −1. Ordering the vertices of
K4 in the natural way, we see that

A(1) =


0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0

 , A(τ) =

0 0 1 1
0 0 0 0
1 0 0 1
1 0 1 0

 .
So, A1 = A(1) · 1 + A(τ) · 1 is the adjacency matrix of X , as we would expect,

and Aρ = A(1) · 1 + A(τ) · (−1). Also since both the representations are degree-1,
Q1 = Qρ = Q ⊗ I1 = Q, where Q is the diagonal matrix with all entries 2, and so is the
same as 2I4.

8If the reader is not familiar with the tensor product, a gentle introduction is in [2] and a terser presentation is in
[1, Ch. 2].
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Therefore using the determinant formula (7), since r = 6− 4 + 1 = 3, we see that

L(s, 1, Y/X)−1 = (1− s2)2 det(I4 − A1s+ 2I4s
2)

= (1− s2)2

∣∣∣∣∣∣∣∣
2s2 + 1 −s −s −s
−s 2s2 + 1 −s −s
−s −s 2s2 + 1 −s
−s −s −s 2s2 + 1

∣∣∣∣∣∣∣∣
= (s2 − 1)2(s− 1)(2s− 1)(2s2 + s+ 1)3.

Similarly,

L(s, ρ, Y/X)−1 = (1− s2)2 det(I4 − Aρs+ 2I4s
2)

= (1− s2)2

∣∣∣∣∣∣∣∣
2s2 + 1 −s s s
−s 2s2 + 1 −s −s
s −s 2s2 + 1 s
s −s s 2s2 + 1

∣∣∣∣∣∣∣∣
= (s2 − 1)2(s+ 1)(2s+ 1)(2s2 − s+ 1)3.

Therefore, using (6), we must have

ζY (s)
−1 = L(s, 1, Y/X)−1L(s, ρ, Y/X)−1

= (s2 − 1)5(4s2 − 1)(2s2 + s+ 1)3(2s2 − s+ 1)3.

We also know the Ihara zeta function of K4, since it is simply L(s, 1, Y/X).

We conclude this section with the Riemann hypothesis for the Ihara zeta function.

Definition 4.11 (Riemann hypothesis) Let X be a connected (q + 1)-regular graph with no
degree-1 vertices. Then the Ihara zeta function ζX(q−s) satisfies the Riemann hypothesis if and
only if when 0 < <(s) < 1, then ζX(q−s)−1 = 0 implies <(s) = 1/2.

It is a striking difference with number theory that the graph-theoretic Riemann hypothesis is
very easily settled: it holds precisely for the family of Ramanujan graphs. A connected (q + 1)-
regular graph X is said to be Ramanujan if

µ = max{|λ| : λ ∈ Spec(X), |λ| 6= q + 1}

is such that µ ≤ 2
√
q.

Theorem 4.12 Let X be a connected (q + 1)-regular graph with no degree-1 vertices. Then ζX
satisfies the Riemann hypothesis if and only if X is Ramanujan.

For better or worse, the determinant formula (7) reduces the proof of this to a straightforward
analysis of the quadratic formula, and we omit it here (see [12, Ch. 7]).

28



5 Conclusion

We hope the reader who has followed along thus far is convinced there is truly a wonderful
genuine analogy between graphs and number theory. As we have seen, this connection is at the
confluence of graph theory, algebra, number theory, topology, and analysis, which makes it all
the more exciting. We conclude with a few questions that might be worth investigating in the
future.

• An open problem asks whether every finite group occurs as the Galois group of a Galois
number field K/Q. This is the Inverse Galois problem. Can this problem be solved for
graph coverings?

• One natural way to extend the analogy between graph coverings and number fields would
be to introduce a suitable notion of ramification for graph coverings, perhaps by intro-
ducing a notion of multiplicity that leads to the concept of a branched covering. Then,
we could examine if the f -g theorem can be extended to an e-f -g theorem for coverings.
With an e-f -g theorem, we could look to refine our understanding of the “factorization” of
primes in coverings; we saw that in a Galois extension K/Q, there is a surjective homo-
morphism ϕ : Zp → Gal(Fp/Fp), which is an isomorphism when p is unramified. When
p is ramified, the kernel of ϕ is called the inertia subgroup Ip of Zp. The group Zp and its
subgroup Ip help us understand how a prime behaves in going from Z toOK . For instance,
it can be shown that the fixed field KIp is the largest intermediate field in K/Q such that p
remains unramified in it and that p only splits in going from Q to the fixed field KDp (i.e.,
e = f = 1 and g = [KDp : Q]). Do such “refining” towers of intermediate fields exist for
graph coverings once we have a notion of ramification?

• Another way to extend the analogy would be to find an analogue to cyclotomic number
fields Q(ζn). It is not at all clear how one would do this, but suppose we succeeded in
this! We could then investigate if the Kronecker-Weber theorem held for our cyclotomic
graph coverings. The Kronecker-Weber theorem is a fascinating result: it shows that the
number fields which are Galois over Q and have abelian Galois groups (such extensions
are called abelian extensions) are in bijective correspondence with the intermediate fields
of cyclotomic extensions Q(ζn)/Q as n runs through Z. Thus, by Galois theory, every
finite abelian extension of Q corresponds to a subgroup of Gal(Q(ζn)/Q) ∼= (Z/nZ)× for
some n ∈ Z. A Kronecker-Weber theorem for graph coverings would essentially be the
start of a class field theory, the construction of which is listed as a research problem by
Terras in her book [12].
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