REPRESENTATION THEORY OF $GL_2(\mathbb{F}_q)$

DAKSH AGGARWAL

The group
$$\operatorname{GL}_2(\mathbb{F}_q) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathbb{F}_q, ad - bc \neq 0 \right\}$$
. We have
$$|\operatorname{GL}_2(\mathbb{F}_q)| = q(q+1)(q-1)^2.$$

A nice way to see this is to consider the transitive action of $\operatorname{GL}_2(\mathbb{F}_q)$ on $\mathbb{P}^1(\mathbb{F}_q)$. Then

$$\operatorname{stab}((1:0)) = B := \left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \right\}.$$

So,

$$|\operatorname{GL}_2(\mathbb{F}_q)| = |\mathbb{P}^1(\mathbb{F}_q)| \cdot |B| = (q+1) \cdot q(q-1)^2.$$

1. Conjugacy classes

The conjugacy classes of $\operatorname{GL}_2(\mathbb{F}_q)$ are determined by Jordan normal forms.

- Central: $g = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix}$. Such an element is stable under conjugation, so there is a single element in this class and q 1 such classes.
- Parabolic: $g = \begin{bmatrix} r & 1 \\ 0 & r \end{bmatrix}$. We have

$$\operatorname{stab}(g) = \left\{ \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} \right\},$$

so there are $|\operatorname{GL}_2(\mathbb{F}_q)|/q(q-1) = q^2 - 1$ elements in the class and q-1 such classes.

• Hyperbolic: $g = \begin{bmatrix} r & 1 \\ 0 & s \end{bmatrix}, r \neq s$. We get

$$\operatorname{stab}(g) = \left\{ \begin{bmatrix} a & 0\\ 0 & d \end{bmatrix} \right\},\$$

and thus there are $|\operatorname{GL}_2(\mathbb{F}_q)|/(q-1)^2 = q(q+1)$ elements in the class and (q-1)(q-2)/2 such classes (we divide by 2 because the order of r and s does not matter).

• Elliptic: Fix an element $\delta \in \mathbb{F}_q \setminus \mathbb{F}_q^2$. Then $g = \begin{bmatrix} r & s\delta \\ s & r \end{bmatrix}, s \neq 0$. We see

$$\operatorname{stab}(g) = \left\{ \begin{bmatrix} a & b\delta \\ b & a \end{bmatrix} \right\} \simeq \mathbb{F}_q(\sqrt{\delta})^{\times} \simeq \mathbb{F}_{q^2}^{\times}$$

and so there are $|\operatorname{GL}_2(\mathbb{F}_q)|/(q^2-1) = q(q-1)$ elements in the class and q(q-1)/2 such classes (here we divide by 2 because the sign of s does not matter).

In all, there are $q^2 - 1$ conjugacy classes.

Date: July 29, 2021.

2. Representations of $\operatorname{GL}_2(\mathbb{F}_q)$

2.1. Type I. These irreducible representations are induced by characters of the subgroup of upper triangular matrices B.

- Given a character α of \mathbb{F}_q^{\times} , we get a degree-1 representation of $\operatorname{GL}_2(\mathbb{F}_q)$ by composing α with the det : $\operatorname{GL}_2(\mathbb{F}_q) \to \mathbb{F}_q^{\times}$ map. There are q-1 of these by the duality of abelian groups.
- Principal series representation: Let $\pi = \text{Ind}_B^G 1$. Unfortunately, π is not quite irreducible since it has the trivial representation in it. But by removing the trivial representation, we get π_0 , an irreducible representation, i.e.,

$$\pi = \pi_0 \oplus 1.$$

For each 1-d representation α , we obtain a (q + 1)-degree irreducible representation by tensoring:

$$\pi_{\alpha} = \pi_0 \otimes \alpha.$$

There are q-1 of these. Let us now calculate the character $\chi_{\pi_{\alpha}}$ using the Frobenius formula with modifications to account for removing the trivial representation and tensoring with α ,

$$\chi_{\pi_{\alpha}}(g) = \left(-1 + \sum_{g_i \in B \setminus G} \delta_B(g_i g g_i^{-1})\right) \alpha(\det(g)).$$

A set of representatives for $B \setminus G$ is

$$\left\{ \begin{bmatrix} x & 1\\ 1 & 0 \end{bmatrix} : x \in \mathbb{F}_q \right\} \cup \{I\},$$

where I is the identity matrix.

- Central g:

$$\chi_{\pi_{\alpha}}(g) = (-1 + (q+1)) \,\alpha(r^2) = q\alpha(r)^2.$$

- Parabolic g:

$$\chi_{\pi_{\alpha}}(g) = (-1+1)\alpha(r^2) = 0.$$

- Hyperbolic g:

$$\chi_{\pi_{\alpha}}(g) = (-1 + (q+1)) \alpha(rs) = q\alpha(rs).$$

- Elliptic g:

$$\chi_{\pi_{\alpha}}(g) = (-1+0) \, \alpha(r^2 - s^2 \delta) = -\alpha(N(z)),$$

where $N : \mathbb{F}_q(\sqrt{\delta})^{\times} \to \mathbb{F}_q^{\times}$ is the norm map, and we are denoting $z = r + s\sqrt{\delta}$. • Given two characters $\alpha \neq \beta$ of \mathbb{F}_q^{\times} , we define a 1-d representation $\mu_{\alpha,\beta}$ of B by

$$\mu_{\alpha,\beta} \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} = \alpha(a)\beta(d).$$

We then get an irreducible (q + 1)-degree representation of G by induction

$$\rho_{\alpha,\beta} = \operatorname{Ind}_B^G \mu_{\alpha,\beta}.$$

Since $\rho_{\alpha,\beta} \simeq \rho_{\beta\alpha}$, we have (q-1)(q-2)/2 of these. The character is given by

$$\chi_{\rho_{\alpha,\beta}}(g) = \sum_{g_i \in B \setminus G} \delta_B(g_i g g_i^{-1}) \mu_{\alpha,\beta}(g_i g g_i^{-1}).$$

- Central g:

$$\chi_{\rho_{\alpha,\beta}}(g) = (q+1)\alpha(r)\beta(r)$$

- Parabolic g:

$$\chi_{\rho_{\alpha,\beta}}(g) = \alpha(r)\beta(r),$$

where this term comes from $g_i = I$ and the other terms are 0.

- Hyperbolic g:

$$\chi_{\rho_{\alpha,\beta}}(g) = q\alpha(s)\beta(r) + \alpha(r)\beta(s).$$

Note: this value does not match what Terras has given. I am not sure why – maybe there is a problem with the coset representatives I have chosen but all the other calculations work out fine.

- Elliptic g:

$$\chi_{\rho_{\alpha,\beta}}(g) = 0.$$

2.2. Type II. There are called Discrete series representation or cuspidial representations. Fix a character ν of $\mathbb{F}_q(\sqrt{\delta})^{\times}$. We have to assume ν is *nondecomposable*: there does *not* exist a character χ of \mathbb{F}_q^{\times} such that

$$\nu = \chi \circ N_{\mathbb{F}_q(\sqrt{\delta})/\mathbb{F}_q}.$$

Since $\mathbb{F}_q(\sqrt{\delta}) \simeq \mathbb{F}_{q^2}$, the norm map is simply $N : z \mapsto z \cdot z^q$. The nondecomposibility is, in fact, equivalent to $\nu \neq \nu^q$. Indeed, if ν were nondecomposable, then

$$\nu(z)^q = \nu(z^q) = \chi(N(z^q)) = \chi(N(z)) = \nu(z).$$

For the converse, suppose $\nu = \nu^q$.. Let $\chi : \mathbb{F}_q^{\times} \to \mathbb{C}^{\times}$ be $\chi(x) = \sqrt{\nu(x)}$. Then we claim $\nu = \chi \circ N$. Indeed, let $z \in \mathbb{F}_{q^2}^{\times}$ with $N(z) = a \in \mathbb{F}_q^{\times}$. Then, since $\nu(z) = \nu(z)^q$,

$$\nu(z)^2 = \nu(z)^{q+1} = \nu(z^{q+1}) = \nu(a),$$

and so

$$\nu(z) = \sqrt{\nu(a)} = \chi(a) = \chi(N(z)).$$

A consequence of this is that

(2.1)
$$\sum_{N(z)=1} \nu(z) = 0$$

This can be seen as follows. By Hilbert's Theorem 90, elements z such that N(z) = 1 are of the form y^q/y for some $y \in \mathbb{F}_{q^2}$, and so

$$\sum_{N(z)=1} \nu(z) = \frac{1}{q} \sum_{y \in \mathbb{F}_{q^2}^{\times}} \nu(y^q/y) = \frac{1}{q} \sum_{y \in \mathbb{F}_{q^2}^{\times}} \nu(y)^q \nu(y)^{-1}.$$

Since ν is nondecomposable, there exists $a \in \mathbb{F}_{q^2}^{\times}$ such that $\nu(a)^q \neq \nu(a)$, i.e., $\nu(a)^q \nu(a)^{-1} \neq 1$. Then,

$$\nu(a)^{q}\nu(a)^{-1}\sum_{N(z)=1}\nu(z) = \frac{1}{q}\sum_{y\in\mathbb{F}_{q^{2}}^{\times}}\nu(ay)^{q}\nu(ay)^{-1} = \sum_{N(z)=1}\nu(z),$$

and the result follows. Clearly, (2.1) also holds for sums over N(z) = x for any $x \in \mathbb{F}_q^{\times}$ different from 1 too.

To define the discrete series representation, we use the fact that $\operatorname{GL}_2(\mathbb{F}_q)$ is generated by B and $w = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. In fact, when $c \neq 0$, we have the following decomposition

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} (bc - ad)/c & -a \\ 0 & -c \end{bmatrix} w \begin{bmatrix} 1 & d/c \\ 0 & 1 \end{bmatrix}.$$

So, we only need to define the representation on B and w. Fix a nontrivial representation ψ of \mathbb{F}_q . Then the representation σ_{ν} acts on the (q-1)-dimensional vector space of functions on \mathbb{F}_q^{\times} as follows:

$$\left(\sigma_{\nu}\begin{bmatrix}a&b\\0&d\end{bmatrix}f\right)(x) = \nu(d)\psi(bd^{-1}x)f(ad^{-1}x),$$

and

$$\left(\sigma_{\nu}(w)f\right)(x) = -\sum_{x \in \mathbb{F}_q^{\times}} \nu(x^{-1})j(yx)f(x),$$

where j is a generalized Kloosterman sum

$$j(u) = \frac{1}{q} \sum_{\substack{t \in \mathbb{F}_q(\sqrt{\delta})^{\times} \\ N(t) = u}} \psi(t + \overline{t})\nu(t).$$

2.2.1. Character of σ_{ν} .

• Central g:

$$(\sigma_{\nu}(g)\delta_a)(x) = \nu(r)\psi(0)\delta_a(x) = \nu(r)\delta_a(x).$$

So,

$$\chi_{\sigma_{\nu}}(g) = (q-1)\nu(r)$$

• Parabolic g:

$$(\sigma_{\nu}(g)\delta_a)(x) = \nu(r)\psi(r^{-1}x)\delta_a(x).$$

Then

$$\chi_{\sigma_{\nu}}(g) = \nu(r) \sum_{a \in \mathbb{F}_q^{\times}} \psi(r^{-1}a) = -\nu(r).$$

• Hyperbolic g:

$$(\sigma_{\nu}(g)\delta_{a})(x) = \nu(s)\psi(0)\delta_{a}(rs^{-1}x) = \nu(s)\delta_{sr^{-1}a}(x).$$

This is a shift matrix not fixing any element, so

$$\chi_{\sigma_{\nu}}(g) = 0$$

• Elliptic g: We use the decomposition into elements of B and w:

$$\begin{bmatrix} r & s\delta \\ s & r \end{bmatrix} = \begin{bmatrix} (s^2\delta - r^2)/s & -r \\ 0 & -s \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & s^{-1}r \\ 0 & 1 \end{bmatrix}.$$

We have

$$\delta_a'(x) \coloneqq \left(\sigma_\nu \begin{bmatrix} 1 & s^{-1}r \\ 0 & 1 \end{bmatrix} \delta_a\right)(x) = \psi(s^{-1}rx)\delta_a(x),$$
$$\left(\sigma \begin{bmatrix} 0 & 1 \\ s' \end{bmatrix} \delta_a'\right)(x) = \sum_{i=1}^{n} \psi(s^{-1})i(xy)\delta_a'(y) = -\psi(s^{-1})i(xy)\delta_a'(y)$$

$$\delta_a''(x) \coloneqq \left(\sigma_{\nu} \begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix} \delta_a'\right)(x) = -\sum_{y \in \mathbb{F}_q^{\times}} \nu(y^{-1}) j(xy) \delta_a'(y) = -\nu(a^{-1}) j(xa) \psi(s^{-1}ra).$$

Finally,

$$(\sigma_{\nu}(g)\delta_{a})(x) = \left(\sigma_{\nu} \begin{bmatrix} (s^{2}\delta - r^{2})/s & -r \\ 0 & -s \end{bmatrix} \delta_{a}'' \right)(x)$$
$$= \nu(-s)\psi(s^{-1}rx)\delta_{a}'' \left(\frac{r^{2} - s^{2}\delta}{s^{2}}x\right)$$
$$= -\nu\left(-\frac{s}{a}\right)\psi\left(\frac{rx + ra}{s}\right)j\left(\frac{N(z)xa}{s^{2}}\right),$$

where we are taking $z = r + s\sqrt{\delta}$ and N is the norm map $\mathbb{F}_{q^2} \to \mathbb{F}_q$. Thus, we calculate the character as

$$\begin{split} \chi_{\sigma_{\nu}}(g) &= -\sum_{a \in \mathbb{F}_{q}^{\times}} \nu\left(-\frac{s}{a}\right) \psi\left(\frac{2ra}{s}\right) j\left(\frac{N(z)a^{2}}{s^{2}}\right) \\ &= -\frac{1}{q} \sum_{a \in \mathbb{F}_{q}^{\times}} \nu\left(-\frac{s}{a}\right) \psi\left(\frac{2ra}{s}\right) \sum_{\substack{t \in \mathbb{F}_{q}(\sqrt{\delta})^{\times} \\ N(t) = a^{2}N(z)/s^{2}}} \psi(t+\bar{t})\nu(t) \\ &= -\frac{1}{q} \sum_{a \in \mathbb{F}_{q}^{\times}} \psi\left(\frac{2ra}{s}\right) \sum_{\substack{t \in \mathbb{F}_{q}(\sqrt{\delta})^{\times} \\ N(t) = a^{2}N(z)/s^{2}}} \psi(t+\bar{t})\nu\left(-\frac{s}{a}t\right) \\ &= -\frac{1}{q} \sum_{a \in \mathbb{F}_{q}^{\times}} \psi\left(\frac{2ra}{s}\right) \sum_{\substack{t \in \mathbb{F}_{q}(\sqrt{\delta})^{\times} \\ N(t) = N(z)}} \psi\left(-\frac{a}{s}(t+\bar{t})\right)\nu(t) \quad (\text{reindexing } t \mapsto -at/s) \\ &= -\frac{1}{q} \sum_{\substack{t \in \mathbb{F}_{q}(\sqrt{\delta})^{\times} \\ N(t) = N(z)}} \nu(t) \sum_{a \in \mathbb{F}_{q}^{\times}} \psi\left(\frac{a}{s}(2r-t-\bar{t})\right). \end{split}$$

Now, if $2r - (t + \overline{t}) \neq 0$, then the inner sum is simply -1. Suppose $2r - (t + \overline{t}) = 0$, so then the inner sum is q - 1; let $t = u + v\sqrt{\delta}$. Then we have u = r. But we also require $N(t) = N(z) = r^2 - s^2\delta$, from which we conclude $v = \pm s$, and so $t \in \{z, \overline{z}\}$. Therefore,

$$-q\chi_{\sigma_{\nu}}(g) = \left(\sum_{\substack{t \in \mathbb{F}_q(\sqrt{\delta})^{\times} \\ N(t) = N(z)}} -\nu(t)\right) + \nu(z) + \nu(\overline{z}) + (q-1)(\nu(z) + \nu(\overline{z})) = q(\nu(z) + \nu(\overline{z})),$$

where the first sum is zero because ν is nondecomposable (2.1). Thus,

$$\chi_{\sigma_{\nu}}(g) = -\nu(z) - \nu(\overline{z}).$$