REPRESENTATION THEORY OF GLy(F,)

DAKSH AGGARWAL

The group GLy(F,) = { [Z 2} ca,b,c,d € Fy,ad — be # 0}. We have

| GLo(Fg)| = q(q + 1)(q — 1)*.

A nice way to see this is to consider the transitive action of GLa(F,) on P}(F,). Then
a b
stab((1:0)) = B == { [O d] } .

| GLo(Fy)| = [P*(Fy)| - |B] = (g +1) - (g — 1)*.

So,

1. CONJUGACY CLASSES

The conjugacy classes of GLa(IF,) are determined by Jordan normal forms.

r
0
element in this class and ¢ — 1 such classes.

" 1]. We have

0 r
- { )

so there are | GL2(F,)|/q(¢ — 1) = ¢*> — 1 elements in the class and g — 1 such classes.
r
0

e Central: g = Such an element is stable under conjugation, so there is a single

e Parabolic: g = [

e Hyperbolic: g = i] ,7 # 5. We get

{4}

and thus there are | GLa(Fy)|/(g — 1)? = q(q + 1) elements in the class and (g — 1)(q — 2)/2
such classes (we divide by 2 because the order of r and s does not matter).

" 85] ,s # 0. We see

e Elliptic: Fix an element 6 € F, \]Fg Then g = [5 ,

a

stab(g) = { {Z b‘s]} ~ Fy (Vo) =F,

and so there are | GL2(F,)|/(¢*> — 1) = q(q — 1) elements in the class and g(g — 1)/2 such
classes (here we divide by 2 because the sign of s does not matter).

In all, there are ¢> — 1 conjugacy classes.
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2. REPRESENTATIONS OF GLy(FF)
2.1. Type 1. These irreducible representations are induced by characters of the subgroup of upper
triangular matrices B.
e Given a character a of F, we get a degree-1 representation of GLy(F,) by composing «
with the det : GLy(F,) — F7 map. There are ¢ —1 of these by the duality of abelian groups.
e Principal series representation: Let m = Indg 1. Unfortunately, 7 is not quite irreducible
since it has the trivial representation in it. But by removing the trivial representation, we
get mp, an irreducible representation, i.e.,
T =my @b 1.

For each 1-d representation «, we obtain a (¢ + 1)-degree irreducible representation by
tensoring:
Tq = T X Q.

There are ¢—1 of these. Let us now calculate the character y, using the Frobenius formula
with modifications to account for removing the trivial representation and tensoring with «,

Xra(9) = | =1+ D 05(gigg; ") | e(det(g)).
g;€B\G

A set of representatives for B \ G is

{[“17 (1)] :xqu}U{I},

where I is the identity matrix.
— Central g:

Xra(9) = (=1 + (¢ + 1)) a(r®) = qa(r)*.

— Parabolic ¢:
Xra(9) = (=14 1a(r®) = 0.

— Hyperbolic g:

Xra(9) = (=1 + (¢ + 1)) a(rs) = qa(rs).
— Elliptic g:

Xma(9) = (=14 0)a(r? - 5°5) = —a(N(2)),
where N : F,(V/§)* — F is the norm map, and we are denoting z = r + 5V/06.

e Given two characters a # 8 of qu, we define a 1-d representation pi g of B by

o3 4] = a@sta)

We then get an irreducible (g + 1)-degree representation of G by induction

Pa,p = Indf Ha,B-
Since pas ~ pg,, we have (¢ — 1)(q — 2)/2 of these. The character is given by
Xpas(@) =Y 08(9i99; ta,s(gi99; ).
g:€B\G

— Central g:

Xpas(9) = (¢ + 1)a(r)B(r).
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— Parabolic g:
Xpa,s(9) = a(r)B(r),
where this term comes from g; = I and the other terms are 0.
— Hyperbolic ¢:
Xpa,s(9) = qo(s)B(r) + a(r)B(s).
Note: this value does not match what Terras has given. I am not sure why — maybe there
is a problem with the coset representatives I have chosen but all the other calculations
work out fine.
— Elliptic g:
Xpa,s (9) =0.
2.2. Type II. There are called Discrete series representation or cuspidial representations. Fix a

character v of Fy(v/§)*. We have to assume v is nondecomposable: there does not exist a character
x of F such that

V=X Np (/5)F,

Since ]Fq(\/g) =~ Fg2, the norm map is simply N : 2z — 2z - 29 The nondecomposibility is, in fact,
equivalent to v # v4. Indeed, if ¥ were nondecomposable, then

v(2)? = v(27) = x(N(z9)) = x(N(2)) = v(2).
For the converse, suppose v = v9.. Let x : F — C* be x(v) = y/v(z). Then we claim v = x o N.
Indeed, let z € FqXQ with N(z) = a € F. Then, since v(z) = v(z)4,
v(2)? = v(2) = v(z") = v(a),

and so

A consequence of this is that
(2.1) > w(z)=0.
N(z)=1

This can be seen as follows. By Hilbert’s Theorem 90, elements z such that N(z) = 1 are of the
form y4/y for some y € F2, and so

> v —i > v(y/y) —(11 > vly)wly)

N(z)=1 ye]qu2 yGIF;2

Since v is nondecomposable, there exists a € F;z such that v(a)? # v(a), ie., v(a)lv(a)™t # 1.

Then,
1

vi@t(@)™ Y ve) == Y vlay)ivlay)t= Y u(z),
N(z)=1 yGF:2 N(z)=1
and the result follows. Clearly, (2.1) also holds for sums over N(z) = z for any z € F; different
from 1 too.
To define the discrete series representation, we use the fact that GLo(F,) is generated by B and

w = [ 0 1} . In fact, when ¢ # 0, we have the following decomposition

-1 0
[Z Z]Z [(bc—oad)/c :ﬂw[(l) d{c]‘
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So, we only need to define the representation on B and w. Fix a nontrivial representation ¢ of
;. Then the representation o, acts on the (¢ — 1)-dimensional vector space of functions on F as
follows:

(ay {3 Z] f) () = v(d)p(bd12) f(ad 1),

and

(ov(w)f) () = = Y vla™")jlyz) f(x),

z€Fy
where j is a generalized Kloosterman sum
1 _
j(u) = p > vt +r)
teF, (V)%
N(t)=u

2.2.1. Character of o,,.
e Central ¢:

So,
e Parabolic g:

Then

e Hyperbolic g:
(00(9)da) () = v(5)1(0)da(rs ™ ) = 1(s)d5p-14(2)-

This is a shift matrix not fixing any element, so

Xoy (g) = 0.

e Elliptic g: We use the decomposition into elements of B and w:
rosd]  [(s26—-rH))s —r| [0 1][1 sir
s r| 0 —s||—-1 0|0 1 |~

() = (a—,, [}) 1] 5a) (2) = (s~ rz)da(a),

We have

)= (2| © gla) @) =- 3 vty ianas) = v itea (),
Finally, '

o) @) = (o [0 )




where we are taking z = r + sv/6 and N is the norm map F ¢ — Fg. Thus, we calculate the
character as

X (9) == > v (_2) " <27;G> ; <N(Sz2)a2>
- () (?) > wt+Dp)

a€Fy teFq (V) >
N(t)=a?N(z)/s?

1 2ra — S
= —— E P <S> E w(t + t)l/ (—5t)
a€Fy teF,(V6)

N(t)=a?N(z)/s>

= _; Z W <27;a> Z P (—g(t +¥)> v (t) (reindexing t — —at/s)

a€Fy teFq (V) >
N(t)=N{(z)
1 a _
=, > V(i)ZdJ(g(Qr—t—t)).
teF,(V5)* a€Fy
N()=N(z)

Now, if 2r — (¢t +t) # 0, then the inner sum is simply —1. Suppose 2r — (t +t) = 0, so
then the inner sum is ¢ — 1; let ¢ = u + vv/d. Then we have u = r. But we also require
N(t) = N(2) = r? — 526, from which we conclude v = +s, and so t € {2,%Z}. Therefore,

—axo,(9)= | D —v) | () +rE) + (@ - D) +v(2) = av(z) +v(z),

t€Fq(V/6)
NB=N(2)

where the first sum is zero because v is nondecomposable ([2.1). Thus,
Xo, (9) = —v(2) — v(2).
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