## REPRESENTATION THEORY OF $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$

DAKSH AGGARWAL

The group $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a, b, c, d \in \mathbb{F}_{q}, a d-b c \neq 0\right\}$. We have

$$
\left|\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)\right|=q(q+1)(q-1)^{2} .
$$

A nice way to see this is to consider the transitive action of $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$ on $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$. Then

$$
\operatorname{stab}((1: 0))=B:=\left\{\left[\begin{array}{ll}
a & b \\
0 & d
\end{array}\right]\right\}
$$

So,

$$
\left|\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)\right|=\left|\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right| \cdot|B|=(q+1) \cdot q(q-1)^{2} .
$$

## 1. Conjugacy Classes

The conjugacy classes of $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$ are determined by Jordan normal forms.

- Central: $g=\left[\begin{array}{ll}r & 0 \\ 0 & r\end{array}\right]$. Such an element is stable under conjugation, so there is a single element in this class and $q-1$ such classes.
- Parabolic: $g=\left[\begin{array}{ll}r & 1 \\ 0 & r\end{array}\right]$. We have

$$
\operatorname{stab}(g)=\left\{\left[\begin{array}{ll}
a & b \\
0 & a
\end{array}\right]\right\}
$$

so there are $\left|\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)\right| / q(q-1)=q^{2}-1$ elements in the class and $q-1$ such classes.

- Hyperbolic: $g=\left[\begin{array}{ll}r & 1 \\ 0 & s\end{array}\right], r \neq s$. We get

$$
\operatorname{stab}(g)=\left\{\left[\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right]\right\}
$$

and thus there are $\left|\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)\right| /(q-1)^{2}=q(q+1)$ elements in the class and $(q-1)(q-2) / 2$ such classes (we divide by 2 because the order of $r$ and $s$ does not matter).

- Elliptic: Fix an element $\delta \in \mathbb{F}_{q} \backslash \mathbb{F}_{q}^{2}$. Then $g=\left[\begin{array}{cc}r & s \delta \\ s & r\end{array}\right], s \neq 0$. We see

$$
\operatorname{stab}(g)=\left\{\left[\begin{array}{cc}
a & b \delta \\
b & a
\end{array}\right]\right\} \simeq \mathbb{F}_{q}(\sqrt{\delta})^{\times} \simeq \mathbb{F}_{q^{2}}^{\times}
$$

and so there are $\left|\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)\right| /\left(q^{2}-1\right)=q(q-1)$ elements in the class and $q(q-1) / 2$ such classes (here we divide by 2 because the sign of $s$ does not matter).
In all, there are $q^{2}-1$ conjugacy classes.

Date: July 29, 2021.

## 2. Representations of $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$

2.1. Type I. These irreducible representations are induced by characters of the subgroup of upper triangular matrices $B$.

- Given a character $\alpha$ of $\mathbb{F}_{q}^{\times}$, we get a degree-1 representation of $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$ by composing $\alpha$ with the det: $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right) \rightarrow \mathbb{F}_{q}^{\times}$map. There are $q-1$ of these by the duality of abelian groups.
- Principal series representation: Let $\pi=\operatorname{Ind}_{B}^{G} 1$. Unfortunately, $\pi$ is not quite irreducible since it has the trivial representation in it. But by removing the trivial representation, we get $\pi_{0}$, an irreducible representation, i.e.,

$$
\pi=\pi_{0} \oplus 1
$$

For each 1-d representation $\alpha$, we obtain a $(q+1)$-degree irreducible representation by tensoring:

$$
\pi_{\alpha}=\pi_{0} \otimes \alpha .
$$

There are $q-1$ of these. Let us now calculate the character $\chi_{\pi_{\alpha}}$ using the Frobenius formula with modifications to account for removing the trivial representation and tensoring with $\alpha$,

$$
\chi_{\pi_{\alpha}}(g)=\left(-1+\sum_{g_{i} \in B \backslash G} \delta_{B}\left(g_{i} g g_{i}^{-1}\right)\right) \alpha(\operatorname{det}(g)) .
$$

A set of representatives for $B \backslash G$ is

$$
\left\{\left[\begin{array}{cc}
x & 1 \\
1 & 0
\end{array}\right]: x \in \mathbb{F}_{q}\right\} \cup\{I\},
$$

where $I$ is the identity matrix.

- Central $g$ :

$$
\chi_{\pi_{\alpha}}(g)=(-1+(q+1)) \alpha\left(r^{2}\right)=q \alpha(r)^{2} .
$$

- Parabolic $g$ :

$$
\chi_{\pi_{\alpha}}(g)=(-1+1) \alpha\left(r^{2}\right)=0 .
$$

- Hyperbolic $g$ :

$$
\chi_{\pi_{\alpha}}(g)=(-1+(q+1)) \alpha(r s)=q \alpha(r s) .
$$

- Elliptic $g$ :

$$
\chi_{\pi_{\alpha}}(g)=(-1+0) \alpha\left(r^{2}-s^{2} \delta\right)=-\alpha(N(z)),
$$

where $N: \mathbb{F}_{q}(\sqrt{\delta})^{\times} \rightarrow \mathbb{F}_{q}^{\times}$is the norm map, and we are denoting $z=r+s \sqrt{\delta}$.

- Given two characters $\alpha \neq \beta$ of $\mathbb{F}_{q}^{\times}$, we define a 1-d representation $\mu_{\alpha, \beta}$ of $B$ by

$$
\mu_{\alpha, \beta}\left[\begin{array}{ll}
a & b \\
0 & d
\end{array}\right]=\alpha(a) \beta(d) .
$$

We then get an irreducible $(q+1)$-degree representation of $G$ by induction

$$
\rho_{\alpha, \beta}=\operatorname{Ind}_{B}^{G} \mu_{\alpha, \beta} .
$$

Since $\rho_{\alpha, \beta} \simeq \rho_{\beta_{\alpha}}$, we have $(q-1)(q-2) / 2$ of these. The character is given by

$$
\chi_{\rho_{\alpha, \beta}}(g)=\sum_{g_{i} \in B \backslash G} \delta_{B}\left(g_{i} g g_{i}^{-1}\right) \mu_{\alpha, \beta}\left(g_{i} g g_{i}^{-1}\right) .
$$

- Central $g$ :

$$
\chi_{\rho_{\alpha, \beta}}(g)=(q+1) \alpha(r) \beta(r) .
$$

- Parabolic $g$ :

$$
\chi_{\rho_{\alpha, \beta}}(g)=\alpha(r) \beta(r),
$$

where this term comes from $g_{i}=I$ and the other terms are 0 .

- Hyperbolic $g$ :

$$
\chi_{\rho_{\alpha, \beta}}(g)=q \alpha(s) \beta(r)+\alpha(r) \beta(s) .
$$

Note: this value does not match what Terras has given. I am not sure why - maybe there is a problem with the coset representatives I have chosen but all the other calculations work out fine.

- Elliptic $g$ :

$$
\chi_{\rho_{\alpha, \beta}}(g)=0 .
$$

2.2. Type II. There are called Discrete series representation or cuspidial representations. Fix a character $\nu$ of $\mathbb{F}_{q}(\sqrt{\delta})^{\times}$. We have to assume $\nu$ is nondecomposable: there does not exist a character $\chi$ of $\mathbb{F}_{q}^{\times}$such that

$$
\nu=\chi \circ N_{\mathbb{F}_{q}(\sqrt{\delta}) / \mathbb{F}_{q}} .
$$

Since $\mathbb{F}_{q}(\sqrt{\delta}) \simeq \mathbb{F}_{q^{2}}$, the norm map is simply $N: z \mapsto z \cdot z^{q}$. The nondecomposibility is, in fact, equivalent to $\nu \neq \nu^{q}$. Indeed, if $\nu$ were nondecomposable, then

$$
\nu(z)^{q}=\nu\left(z^{q}\right)=\chi\left(N\left(z^{q}\right)\right)=\chi(N(z))=\nu(z) .
$$

For the converse, suppose $\nu=\nu^{q}$.. Let $\chi: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$be $\chi(x)=\sqrt{\nu(x)}$. Then we claim $\nu=\chi \circ N$. Indeed, let $z \in \mathbb{F}_{q^{2}}^{\times}$with $N(z)=a \in \mathbb{F}_{q}^{\times}$. Then, since $\nu(z)=\nu(z)^{q}$,

$$
\nu(z)^{2}=\nu(z)^{q+1}=\nu\left(z^{q+1}\right)=\nu(a),
$$

and so

$$
\nu(z)=\sqrt{\nu(a)}=\chi(a)=\chi(N(z)) .
$$

A consequence of this is that

$$
\begin{equation*}
\sum_{N(z)=1} \nu(z)=0 . \tag{2.1}
\end{equation*}
$$

This can be seen as follows. By Hilbert's Theorem 90, elements $z$ such that $N(z)=1$ are of the form $y^{q} / y$ for some $y \in \mathbb{F}_{q^{2}}$, and so

$$
\sum_{N(z)=1} \nu(z)=\frac{1}{q} \sum_{y \in \mathbb{F}_{q^{2}}^{\times}} \nu\left(y^{q} / y\right)=\frac{1}{q} \sum_{y \in \mathbb{F}_{q^{2}}^{\times}} \nu(y)^{q} \nu(y)^{-1} .
$$

Since $\nu$ is nondecomposable, there exists $a \in \mathbb{F}_{q^{2}}^{\times}$such that $\nu(a)^{q} \neq \nu(a)$, i.e., $\nu(a)^{q} \nu(a)^{-1} \neq 1$. Then,

$$
\nu(a)^{q} \nu(a)^{-1} \sum_{N(z)=1} \nu(z)=\frac{1}{q} \sum_{y \in \mathbb{F}_{q^{2}}^{\times}} \nu(a y)^{q} \nu(a y)^{-1}=\sum_{N(z)=1} \nu(z),
$$

and the result follows. Clearly, (2.1) also holds for sums over $N(z)=x$ for any $x \in \mathbb{F}_{q}^{\times}$different from 1 too.

To define the discrete series representation, we use the fact that $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$ is generated by $B$ and $w=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$. In fact, when $c \neq 0$, we have the following decomposition

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
(b c-a d) / c & -a \\
0 & -c
\end{array}\right] w\left[\begin{array}{cc}
1 & d / c \\
0 & 1
\end{array}\right]
$$

So, we only need to define the representation on $B$ and $w$. Fix a nontrivial representation $\psi$ of $\mathbb{F}_{q}$. Then the representation $\sigma_{\nu}$ acts on the $(q-1)$-dimensional vector space of functions on $\mathbb{F}_{q}^{\times}$as follows:

$$
\left(\sigma_{\nu}\left[\begin{array}{ll}
a & b \\
0 & d
\end{array}\right] f\right)(x)=\nu(d) \psi\left(b d^{-1} x\right) f\left(a d^{-1} x\right)
$$

and

$$
\left(\sigma_{\nu}(w) f\right)(x)=-\sum_{x \in \mathbb{F}_{q}^{\times}} \nu\left(x^{-1}\right) j(y x) f(x),
$$

where $j$ is a generalized Kloosterman sum

$$
j(u)=\frac{1}{q} \sum_{\substack{t \in \mathbb{F}_{q}(\sqrt{\delta})^{\times} \\ N(t)=u}} \psi(t+\bar{t}) \nu(t) .
$$

### 2.2.1. Character of $\sigma_{\nu}$.

- Central $g$ :

$$
\left(\sigma_{\nu}(g) \delta_{a}\right)(x)=\nu(r) \psi(0) \delta_{a}(x)=\nu(r) \delta_{a}(x) .
$$

So,

$$
\chi_{\sigma_{\nu}}(g)=(q-1) \nu(r) .
$$

- Parabolic $g$ :

$$
\left(\sigma_{\nu}(g) \delta_{a}\right)(x)=\nu(r) \psi\left(r^{-1} x\right) \delta_{a}(x)
$$

Then

$$
\chi_{\sigma_{\nu}}(g)=\nu(r) \sum_{a \in \mathbb{F}_{q}^{\times}} \psi\left(r^{-1} a\right)=-\nu(r) .
$$

- Hyperbolic $g$ :

$$
\left(\sigma_{\nu}(g) \delta_{a}\right)(x)=\nu(s) \psi(0) \delta_{a}\left(r s^{-1} x\right)=\nu(s) \delta_{s r r^{-1} a}(x) .
$$

This is a shift matrix not fixing any element, so

$$
\chi_{\sigma_{\nu}}(g)=0 .
$$

- Elliptic $g$ : We use the decomposition into elements of $B$ and $w$ :

$$
\left[\begin{array}{cc}
r & s \delta \\
s & r
\end{array}\right]=\left[\begin{array}{cc}
\left(s^{2} \delta-r^{2}\right) / s & -r \\
0 & -s
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & s^{-1} r \\
0 & 1
\end{array}\right]
$$

We have

$$
\begin{gathered}
\delta_{a}^{\prime}(x):=\left(\sigma_{\nu}\left[\begin{array}{cc}
1 & s^{-1} r \\
0 & 1
\end{array}\right] \delta_{a}\right)(x)=\psi\left(s^{-1} r x\right) \delta_{a}(x), \\
\delta_{a}^{\prime \prime}(x):=\left(\sigma_{\nu}\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \delta_{a}^{\prime}\right)(x)=-\sum_{y \in \mathbb{F}_{q}^{\times}} \nu\left(y^{-1}\right) j(x y) \delta_{a}^{\prime}(y)=-\nu\left(a^{-1}\right) j(x a) \psi\left(s^{-1} r a\right) .
\end{gathered}
$$

Finally,

$$
\begin{aligned}
\left(\sigma_{\nu}(g) \delta_{a}\right)(x) & =\left(\sigma_{\nu}\left[\begin{array}{cc}
\left(s^{2} \delta-r^{2}\right) / s & -r \\
0 & -s
\end{array}\right] \delta_{a}^{\prime \prime}\right)(x) \\
& =\nu(-s) \psi\left(s^{-1} r x\right) \delta_{a}^{\prime \prime}\left(\frac{r^{2}-s^{2} \delta}{s^{2}} x\right) \\
& =-\nu\left(-\frac{s}{a}\right) \psi\left(\frac{r x+r a}{s}\right) j\left(\frac{N(z) x a}{s^{2}}\right),
\end{aligned}
$$

where we are taking $z=r+s \sqrt{\delta}$ and $N$ is the norm map $\mathbb{F}_{q^{2}} \rightarrow \mathbb{F}_{q}$. Thus, we calculate the character as

$$
\begin{aligned}
\chi_{\sigma_{\nu}}(g) & =-\sum_{a \in \mathbb{F}_{q}^{\times}} \nu\left(-\frac{s}{a}\right) \psi\left(\frac{2 r a}{s}\right) j\left(\frac{N(z) a^{2}}{s^{2}}\right) \\
& =-\frac{1}{q} \sum_{a \in \mathbb{F}_{q}^{\times}} \nu\left(-\frac{s}{a}\right) \psi\left(\frac{2 r a}{s}\right) \sum_{\substack{t \in \mathbb{F}_{q}(\sqrt{\delta}) \times \\
N(t)=a^{2} N(z) / s^{2}}} \psi(t+\bar{t}) \nu(t) \\
& =-\frac{1}{q} \sum_{a \in \mathbb{F}_{q}^{\times}} \psi\left(\frac{2 r a}{s}\right) \sum_{\substack{t \in \mathbb{F}_{q}(\sqrt{\delta}) \times \\
N(t)=a^{2} N(z) / s^{2}}} \psi(t+\bar{t}) \nu\left(-\frac{s}{a} t\right) \\
& =-\frac{1}{q} \sum_{a \in \mathbb{F}_{q}^{\times}} \psi\left(\frac{2 r a}{s}\right) \sum_{\substack{t \in \mathbb{F}_{q}(\sqrt{\delta}) \times \\
N(t)=N(z)}} \psi\left(-\frac{a}{s}(t+\bar{t})\right) \nu(t) \quad(\text { reindexing } t \mapsto-a t / s) \\
& =-\frac{1}{q} \sum_{\substack{\left.t \in \mathbb{F}_{q}\right) \\
N(t)=N(z)}} \nu(t) \sum_{a \in \mathbb{F}_{q}^{\times}} \psi\left(\frac{a}{s}(2 r-t-\bar{t})\right) .
\end{aligned}
$$

Now, if $2 r-(t+\bar{t}) \neq 0$, then the inner sum is simply -1 . Suppose $2 r-(t+\bar{t})=0$, so then the inner sum is $q-1$; let $t=u+v \sqrt{\delta}$. Then we have $u=r$. But we also require $N(t)=N(z)=r^{2}-s^{2} \delta$, from which we conclude $v= \pm s$, and so $t \in\{z, \bar{z}\}$. Therefore,

$$
-q \chi_{\sigma_{\nu}}(g)=\left(\sum_{\substack{t \in \mathbb{F}_{q}(\sqrt{\delta}) \times \\ N(t)=N(z)}}-\nu(t)\right)+\nu(z)+\nu(\bar{z})+(q-1)(\nu(z)+\nu(\bar{z}))=q(\nu(z)+\nu(\bar{z})),
$$

where the first sum is zero because $\nu$ is nondecomposable (2.1). Thus,

$$
\chi_{\sigma_{\nu}}(g)=-\nu(z)-\nu(\bar{z}) .
$$

