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1. Introduction

In this exposition, we will study the problem of finding rational solutions to elliptic curves. We
will formally discuss elliptic curves in the next section but we begin with a brief introduction to the
Diophantine problem of computing rational points on varieties, and why this problem is interesting
for elliptic curves.

A familiar Diophantine problem is to compute integer solutions (x, y) to

L : ax+ by = c,

for a, b, c ∈ Z. We are not interested in only computing a single point but rather, we want to
somehow describe or parameterize all possible integer solutions. This problem for L is, of course,
fully understood. In general, through linear algebra, we understand a linear Diophantine system in
any number of variables as well.

We can say a lot about rational solutions to degree two homogeneous equations, also known as
quadratic forms, too. For example, consider

x2 + y2 = z2.

It is equivalent to instead focus on the circle

C : X2 + Y 2 = 1,

whose nontrivial rational solutions we know how to parameterize. We can fix a nontrivial rational
solution like P = (3/5, 4/5) and let Q = (x0, y0) be any other rational solution on C. Then,
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joining P and Q, we obtain a line of rational slope. Conversely, if we intersect C with any line
through P having rational slope, we recover a rational point on C. In this way, we have provided a
parameterization of rational points on C.

The natural next step is to consider homogeneous cubics. But these are already quite difficult to
analyze in three variables. For example, take the Fermat equation

x3 + y3 = z3,

which on dehomogenizing becomes
F : X3 + Y 3 = 1.

Like for the circle, we might try to use geometry, but the trouble is that no nontrivial rational
solutions are visible upon inspection. Indeed, F has no nontrivial rational solutions, but that is not
obvious and requires some work to show. One way is to factor the original equation in Q(ζ3), with ζ3

a primitive third root of unity, and then use the fact that Z[ζ3] is a UFD along with a Fermat-type
descent argument (e.g. [5, Ch. 17, §8]). We will give another proof of this fact in Theorem 8.5,
using the method we study of computing rational points on elliptic curves. The situation, however,
would have been very different if a single rational point had existed, such as for

E : X3 + Y 3 = 9,

that has the nontrivial solution P = (1, 2). Then, by intersecting the tangent at P with E, we
find a new rational point (−17/7, 20/7). We can, in fact, continue this process to obtain an infinite
number of rational solutions on E (see [5, Ch. 17, §9]). However, unlike the case of the circle, there
is no guarantee this process will hit all rational points on E.

The curves F and E are elliptic curves and the difficulty of finding a description of the rational
points on these curves is characteristic of the problem of describing the rational points on curves
that have genus greater than 0. Therefore, to gain insight about the general situation, it is a worthy
goal to accumulate as much clarity as possible with the simplest case of elliptic curves, which have
genus 1. In fact, elliptic curves being genus 1 curves are special, because we have Falting’s Theorem,
that says the set of rational points on curves with genus greater 1 is finite. So, elliptic curves sit at
a rather exciting cusp.

But it is natural to wonder about why the problem becomes substantially harder in going from
quadratic forms to cubics. The fundamental reason we understand quadratic forms well is because
they satisfy the local-to-global principle. This principle states that given a quadratic form Q over
Q, a rational solution to Q exists if a solution to Q exists over R and Qp for every prime p (note
that the converse is trivially true). In other words, to determine whether a quadratic form Q
has a rational solution, we can instead study it over Qp, where things become much simpler due
to Hensel’s Lemma, that allows us to instead work over the finite field Fp. The local-to-global
principle, however, can fail for positive genus curves. A famous example due to Selmer [15] is the
homogeneous cubic

3x3 + 4y3 + 5z3 = 0,

which has nontrivial solutions over R and Qp for each prime p, but fails to have a rational solution.
We will later on, further emphasize this perspective, since it plays an important role in the com-
putation of rational points on elliptic curves. For now, let us begin by recalling basic facts about
elliptic curves.

2. Elliptic Curves

2.1. Basic terminology. Though we will assume the basic theory of elliptic curves covered in
Silverman’s excellent book [16], we set out the basic definitions and notation. Throughout this
exposition, K refers to a perfect field (possibly with further constraints).
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Definition 2.1. An elliptic curve E/K is a smooth projective curve of genus 1 defined over K with
a distinguished point O having coordinates in K.

Let K̄ denote the algebraic closure of K. It can be shown that E/K is isomorphic to a projective
variety in P2(K̄) that has the form

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3,

with a1, . . . , a6 ∈ K. We can dehomogenize this equation to

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

and studied in A2(K̄), keeping in mind there is a point at infinity O = [0, 1, 0]. This is theWeierstrass
form of E. An important quantity associated to E/K is its discriminant

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6,

where

b2 = a2
1 + 4a2,

b4 = 2a4 + a1a3,

b6 = a2
3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4.

The assumption that E/K is smooth translates precisely to the fact that ∆ 6= 0. It’s a fascinating
and surprising fact that the points of E form an abelian group under an addition operation with O
acting as the identity (see [16, Ch. 3] for how the addition is defined). We denote the subgroup of
points P ∈ E that satisfy [m]P = O, m ∈ Z, as E[m]. Throughout this article, we will similarly
denote the kernel of any map φ : A→ B by A[φ].

The K-rational points E(K) of E is the group of points (x, y) ∈ E with coordinates x, y ∈ K
and is called the Mordell-Weil group of E. Note that O ∈ E(K). When K is a number field, the
Mordell-Weil Theorem asserts that E(K) is a finitely generated group. The structure theorem for
finitely generated Z-modules then implies

E(K) ' Zr × Etors(K),

where Etors(K) is the (finite) torsion subgroup of E(K).
The key first step in the proof is the weak Mordell-Weil Theorem, which says E(K)/mE(K) is a

finite group for all positive integers m. The subsequent proof of the Mordell-Weil Theorem is almost
entirely constructive [16, Ch. 8], except at one step, where we assume we have coset representatives
for E(K)/mE(K). Finding these representatives turns out to be a difficult problem and presently
no general algorithm is known to solve it. More to the point, the main difficulty is in determining
the rank r; we can calculate Etors(K) easily in most cases. In particular, we can gain global torsion
information through local reduction. Let Kv be the completion of K with respect to a discrete
valuation v and let kv be the residue field of Kv.

Proposition 2.2. Suppose the reduced curve Ẽ/kv is smooth and m ∈ Z≥2 is coprime to char(kv).
Then the natural reduction map

E(Kv)[m]→ Ẽ(kv)

is injective.

Proof. This is Proposition 3.1 in Chapter 7 of [16]. �

In other words, E(Kv)[m] is isomorphic to a subgroup of Ẽ(kv). This fact is useful since K ↪→ Kv

is injective.
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Example 2.3. To illustrate the calculation of Etors(K), consider

E/Q : y2 = x3 − 2.

We have ∆ = −26 · 33, and so E/Qp has stable reduction for all primes p 6∈ {2, 3}. Then reducing
mod 5, we compute #Ẽ(F5) = 6 (for instance, at x ≡ 0 (mod 5), y2 ≡ 3 (mod 5), which has no
solutions by quadratic reciprocity, while at x ≡ 1 (mod 5), we have y ≡ 2, 3 (mod 5)). Similarly,
#Ẽ(F7) = 7. Since the orders are coprime, we conclude Etors(Q) = {O} is trivial.

To calculate torsion, we might have instead used the Nagell-Lutz Theorem [16, Ch. 8, Cor. 7.2]
that provides strong necessary conditions for a point to be in Etors(K). However, Proposition 2.2
illustrates a key idea in the method to compute E(K) - we will ultimately rely on the relative ease
of checking if solutions exist to certain equations over finite fields. This strategy is the so-called
“method of descent,” since we are reducing a difficult Diophantine problem over a global field to
several easier problems over a finite field.

There are two kinds of descents at play here. The first one is a descent of base fields and is the
kind we will mostly see done in this article since we successively reduce from a global to a local to
a finite field. The second kind is, à la Fermat, the one the reader might be more familiar with −
the delightful fact is that it forms the basis for the theory of heights, which provides the essential
foundation for the passage from the weak to the full Mordell-Weil Theorem. So, ultimately, both
kinds of descents are being used!

2.2. Overview of strategy. Let us give a high-level overview of the strategy to compute E(K)
and introduce the main characters of the story. Needless to say, this summary glosses over many
details but we hope it motivates why we should care about cohomology or homogeneous spaces.

What we want to do is construct a nice “covering” of E⋃
d

ψd(Cd) = E,

where each Cd is some curve over K and ψd : Cd → E is a morphism. Now, a morphism in general
does not preserve K-rational points, so calculating points in Cd(K) does not necessarily give us
points in E(K). But, if Cd is chosen sufficiently nice relative to E, then we can find a different
elliptic curve E′ such that there exists a nonzero isogeny φ : E → E′ for which φ ◦ψ is defined over
K, i.e., φ ◦ ψ preserves K-rational points:

Cd(K)
ψd−→ E

φ−→ E′(K).

To compute K-rational points on E, we can reverse the roles of E and E′. Now, computing Cd(K)
is essentially as difficult as computing E(K) (as we will see, Cd is isomorphic to E over K̄ and so
has genus 1, meaning Cd(K) need not be finite). But, checking whether Cd(K) is non-empty is a
slightly more reasonable task. This is also why we need to study multiple Cd’s even though a single
Cd(K) would be surjective on E′(K) (nonconstant morphisms of curves are surjective).

The first step towards reducing towards this simpler problem is to focus on computingE(Q)/mE(Q)
for some m > 1. Computing generators for E(Q)/mE(Q) allows us to compute E(Q) by retracing
the proof of the Mordell-Weil Theorem. So, we can take E = E′ and φ = [m]. Ideally, we want there
to be a one-to-one correspondence between these nice curves Cd’s and elements of E(Q)/mE(Q) -
if Cd has a K-rational point then using the parameter d, we deduce an element of E(Q)/mE(Q).

How does one go about finding these magical Cd? The curves we are looking for are called
homogeneous spaces of E: they are K̄-isomorphic to E and E has a simply transitive action on
them. The collection of these homogeneous spaces (up to a nice K-isomorphism) form the Weil-
Châtelet group WC(E/K). The groupWC(E/K) can be quite unwieldy but it is in correspondence
with the first cohomology group H1(GK̄/K , E) of E, which allows us to think about homogeneous
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spaces concretely. Using Galois cohomology, we will show E(K)/mE(K) embeds into the smaller
cohomology group H1(GK̄/K , E[m]). In fact, E(K)/mE(K) embeds into an even smaller finite
subgroup of H1(GK̄/K , E[m]) called the Selmer group.

The Selmer group, via the correspondence between cohomology and homogeneous spaces, helps
reduce the large search space ofWC(E/K) to a finite set of homogeneous spaces Cd’s parameterized
by a certain set of d’s. It turns out, we have to check whether each of these Cd’s has a Kv-rational
point for each valuation v, and if it does, we obtain an element of the Selmer group. Once we have
calculated the Selmer group, to recover E(K)/mE(K), we check which of the homogeneous spaces
have a K-rational point. These homogeneous spaces then form the “covering” we were looking for.
It be can seen from the theory of heights (not discussed here), and as we will see in practice, there
is good reason to think that finding rational points on Cd will be easier. The maps φ ◦ ψd with,
say, degree n will locally behave like the power map x 7→ xn, essentially meaning that a K-rational
point P on E′ will correspond to a K-rational point on Cd whose height is scaled down by an order
of n. Thus, if Cd has K-rational points, it is often easy to find at least one.

We will be focusing our efforts on elliptic curves over Q that have at least one rational torsion
point of order 2. This is not as restrictive as it might sound. It is a famous theorem of Mazur [10]
that Etors(Q) is isomorphic to one of the following:

• Z/nZ for 1 ≤ n ≤ 10 or n = 12
• Z/2Z× Z/2nZ for 1 ≤ n ≤ 4.

So, the method we will study does not apply for those elliptic curves with Etors(Q) equal to Z/nZ for
n = 1, 3, 5, 7, 9. But, the method may be adapted to work for these other cases, as we demonstrate
when n = 3 in Example 8.5, though the computation becomes more intricate.

We start with an introduction to basic group cohomology because, as we noted above, it provides
the basic tools to work with the auxiliary curves that are of interest to us. Further, Example 3.3
provides a more direct glimpse of the relevance of cohomology to parameterizing rational points.

3. Group Cohomology

We mainly need H0 and H1 for our purposes (we need H2 just once, in Example 8.5), and so we
explain them with separate definitions. There is, however, a general definition that unifies the two
definitions, for which the reader can refer to [1] or [7, Ch. 6].

3.1. Finite Group Cohomology. Let G be a finite group and let M be an abelian group acted
upon by G. The action of σ ∈ G is denoted m 7→ mσ. In this subsection, a simple example to have
in mind is a Galois number field M = K/Q and G = Gal(K/Q).

The 0th cohomology group of M , denoted H0(G,M), is

H0(G,M) = {m ∈M : mσ = m for all σ ∈ G}.

So, H0(G,M) is the part of M on which the action of G is trivial.
Next, the group of 1-cochains C1(G,M) is the set of all maps from G toM under addition. Within

C1(G,M) we have the subgroup of 1-cocycles Z1(G,M) defined as the set of all maps ξ : G → M
satisfying

ξστ = ξτσ + ξτ , for all σ, τ ∈ G.
(In more conventional function notation, this would read ξ(στ) = τ(ξ(σ)) + ξ(τ).) Note that this
condition says ξ is almost a group homomorphism, but not quite because it is being “twisted” by τ
(it is a “crossed homomorphism”). Within C1(G,M) we also have the subgroup of 1-coboundaries
B1(G,M) that is the set of all maps ξ : G→M for which there exists a point Q ∈M such that

ξσ = Qσ −Q, for all σ ∈ G.
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For example, if Q ∈ H0(G,M), then Qσ − Q is just the zero map. Note that since M is abelian,
C1(G,M) is abelian too. Further, we can check that every 1-coboundary ξ : σ 7→ Qσ − Q is
automatically a 1-cocycle:

ξστ = Qστ −Q = (Qσ −Q)τ + (Qτ −Q) = ξτσ − ξτ .

So, we can form the quotient group H1(G,M) = Z1(G,M)/B1(G,M) that is the 1st cohomology
group.

Example 3.1. To get some basic intuition, suppose G acts trivially on M . Then, H0(G,M) = M.
Further, Z1(G,M) is just the set of group homomorphisms Hom(G,M) and B1(G,M) = {0},
implying that H1(G,M) = Hom(G,M).

Example 3.2. Let us compute with M = Q(
√
d), where d is a squarefree integer, and G =

Gal(Q(
√
d)/Q). Since Q(

√
d)/Q is a Galois extension, H0(G,M) = Q. What is Z1(G,M)? Note

that G ' Z/2Z has only two elements, the trivial automorphism 1 and the automorphism σ that
exchanges

√
d with −

√
d. So if ξ ∈ Z1, it satisfies

ξ1 = ξ1·1 = ξ1
1 + ξ1 = 2ξ1,

and so ξ1 = 0. Similarly,
0 = ξ1 = ξσ·σ = ξσσ + ξσ,

and so ξσσ = −ξσ, from which we conclude that ξσ = q
√
d for some q ∈ Q. Thus, observe that

ξτ = (1− q

2

√
d)τ − (1− q

2

√
d),

for all τ ∈ G, meaning that ξ is also a 1-coboundary, and so H1(G,M) = 0.

The result of the previous example is, in fact, a special case of the extremely useful result known
as Hilbert’s Theorem 90, that says H1(Gal(L/K), L) and H1(Gal(L/K), L×) are both trivial [7,
Ch. 6, Thm 10.1].

Example 3.3. Let us see an example that helps motivate why cohomology should be relevant to
computing rational points. Returning to our example of the circle in Section 1, suppose we want to
find rational solutions to the slightly more general

C : x2 + dy2 = 1,

where d ∈ Z is squarefree. Then, working in L = Q(
√
−d), we can factor C as

(x+
√
−dy)(x−

√
−dy) = 1.

Letting N denote the norm map of L/Q, we notice from this factorisation that each rational point
(x, y) ∈ C(Q) corresponds to the element α = x + y

√
−d ∈ L such that N(α) = 1. Now, given

α ∈ L with N(α) = 1, we can define the 1-cocycle α̂ ∈ H1(Gal(L/Q), L×)

τ 7→

{
1 τ = 1

α τ = σ,

where 1 is the identity and σ is the nontrivial automorphism on L. We can check that α̂ is really a
cocycle - the interesting verification is this one:

1 = α̂1 = α̂σ·σ = α̂σσ · α̂σ = ασ · α = N(α) = 1.
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But, by Hilbert’s Theorem 90, H1(Gal(L/Q), L×) is trivial, so α̂ is actually a 1-coboundary, and
thus there exists an element β ∈ L× such that α̂τ = βτ/β. Taking β = a− b

√
−d for some a, b ∈ Q

and τ = σ, we get

x+ y
√
−d = α =

βσ

β
=
a+ b

√
−d

a− b
√
−d

=
a2 − bd2

a2 + bd2
+

2ab

a2 + bd2

√
−d.

Thus, we recover the parameterization of rational points on C

x =
a2 − b2d2

a2 + b2d2
and y =

2ab

a2 + b2d2
.

This can certainly feel magical at first glance, but it can help to see what is really happening
under the hood. Given α ∈ L with N(α) = 1, what we ultimately want to show is α = β/βσ for
some β ∈ L (β can be exchanged with βσ). But, note that this is the same as requiring 1 to be an
eigenvalue of the linear map T : λ 7→ α · λσ : L → L. With the standard Q-basis, T is represented
by the matrix

T =

[
x yd
y −x

]
,

which can be easily checked to have 1 as an eigenvalue given that N(α) = x2 + dy2 = 1.

A short exact sequence of G-modules

0 −→ P
φ−→M

ψ−→ N → 0,

is a diagram in which φ and ψ are G-homomorphisms (i.e., they commute with the action of G), φ is
injective, ψ is surjective, and im(φ) = ker(ψ). Whenever we have an exact sequence of G-modules,
we get free information about their cohomology groups. Specifically, the following induced sequence
is exact:

(3.4) 0 −→ H0(G,P ) −→ H0(G,M) −→ H0(G,N)
δ−→ H1(G,P ) −→ H1(G,M) −→ H1(G,N).

Here the connecting homomorphism δ is defined as follows. It maps n ∈ H0(G,N) to the
cohomology class {ξ} ∈ H1(G,P ) defined by ξσ = mσ −m for some m ∈ ψ−1(n) (ψ is surjective).
We should check that ξ ∈ Z1(G,P ) (after all m ∈M). First, let us check mσ −m ∈ P (technically
φ(P ), but φ is injective) for all σ ∈ G. Indeed, since n ∈ H0(G,N), we have

ψ(mσ −m) = ψ(m)σ − ψ(m) = nσ − n = 0,

and so mσ −m ∈ ker(ψ) = im(φ) = P . Next, we have

ξστ = mστ −m = (mσ −m)τ + (mτ −m) = ξτσ + ξτ ,

and so ξ ∈ Z1(G,P ), as asserted.
Since the remaining terms can be checked in a similar fashion, here we will only verify that

exactness holds in
H1(G,P ) −→ H1(G,M) −→ H1(G,N).

So, we have to check the kernel of the second map is equal to the image of the first map. Suppose
ξ ∈ H1(G,P ). Then, since ψ ◦ φ = 0, we have ψ ◦ φ ◦ ξ = 0 ∈ B1(G,N). Next, let {ξ} ∈ H1(G,M)
be such that ψ ◦ ξ ∈ B1(G,N), so that (ψξ)σ = nσ − n for some n ∈ N . Fix m ∈ M such that
ψ(m) = n. Consider the 1-cocycle χσ = ξσ +m−mσ ∈ {ξ}. We have

(ψξ)σ = (nσ − n) + (n− nσ) = 0,

and so im(χ) ⊆ ker(ψ) = im(φ). Thus, χ is really a 1-cocycle from G to im(φ), as we wanted to
show.
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Next, suppose H is a subgroup of G. Then, each 1-cochain G → M can naturally be restricted
H →M , preserving cocycles and coboundaries. We obtain the restriction homomorphism

Res : H1(G,M)→ H1(H,M).

Further, suppose H is normal in G, so that G/H has a well-defined action on H0(H,M). If
ξ : G/H → H0(H,M) is a 1-cochain, we obtain we obtain a 1-cochain ξ from G toM by composing
with the quotient projection map:

ξ : G→ G/H
ξ−→ H0(H,M) ⊆M.

So, we get the inflation homomorphism

Inf : H1(G/H,H0(H,M))→ H1(G,M).

It is a straightforward verification that everything works as we expect when we compose Inf and
Res. More precisely, the following sequence is exact:

(3.5) 0→ H1(G/H,H0(H,M))
Inf−−→ H1(G,M)

Res−−→ H1(H,M).

3.2. Galois Cohomology. Let GK̄/K denote the Galois group Gal(K̄/K) of K̄ over K. Recall
that GK̄/K has the profinite topology and so the subgroups of finite index form a basis for its
topology.

An abelian group M is a discrete GK̄/K-module if GK̄/K acts continuously on M with respect to
the profinite topology on GK̄/K and the discrete topology on M : for each m ∈ M , its stabilizer
{σ ∈ GK̄/K : mσ = m} is a subgroup of finite index in GK̄/K . So, observe that K̄ is a GK̄/K-
module, since for every α ∈ K̄, the index of the stabilizer of α is bounded by the degree of the finite
extension K(α)/K.

Let M be a discrete GK̄/K-module. The 0th cohomology group H0(GK̄/K ,M) is defined exactly
as for finite G. The definition of H1(GK̄/K ,M) has some extra restrictions. Particularly, we are
interested in only the continuous 1-cochains GK̄/K → M : the fiber of each m ∈ M should be
a finite index subgroup in GK̄/K . The group of continuous 1-cocycles GK̄/K → M is denoted
Z1

cont(GK̄/K ,M). Note that since M is discrete, the 1-coboundaries GK̄/K →M are automatically
continuous. The 1st cohomology group is then defined as

H1(GK̄/K ,M) = Z1
cont(GK̄/K ,M)/B1(GK̄/K ,M).

We will soon be reinterpreting this cohomology group as a more interesting object when M is an
elliptic curve.

An exact sequence completely analogous to (3.4) holds for the cohomology of discrete GK̄/K-
modules too. We can also generalize Res and Inf. Let L/K be a finite Galois extension, so that
GK̄/L = Gal(K̄/L) is a normal subgroup of finite index in GK̄/K . Since a discrete GK̄/K-module is
also a discrete GK̄/L-module, we obtain

Res : H1(GK̄/K ,M)→ H1(Gk̄/L,M).

Next, H0(GK̄/L,M) has a well-defined action on it by GL/K = GK̄/K/GK̄/L, and so we obtain
the inflation of a 1-cocycle ξ : GL/K → H0(GK̄/L,M) by composing it with the projection map
GK̄/K → GL/K . The Galois analogue of (3.5) and Hilbert’s Theorem 90 also hold.

Example 3.6. Let us compute H1(GK̄/K , µn), which will also be useful later on. Let µn denote
the subgroup of n-th roots of unity in K̄. Then we have the short exact sequence of discrete
GK̄/K-modules

1→ µn → K̄×
n−→ K̄× → 1,
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where n is the power map α 7→ αn. Applying Galois cohomology (3.4), we obtain

1→ H0(GK̄/K , µn)→ K×
n−→ K×

δ−→ H1(GK̄/K , µn)→ H1(GK̄/K , K̄
×)

n−→ H1(GK̄/K , K̄
×).

Focusing on H1(GK̄/K , µn), we see it is surjective on the kernel H1(GK̄/K , K̄
×)[n] via the map

induced by the inclusion Z1
cont(GK̄/K , µn) ↪→ Z1

cont(GK̄/K , K̄
×). Note that the induced map is not

injective because distinct cohomology classes in H1(GK̄/K , µn) might collapse to a single class in
H1(GK̄/K , K̄

×) given the new 1-coboundaries that can be formed by the points of K̄× \µn. Indeed,
the kernel of the induced map is the image of δ, which we see is K×/K×n. In other words, we
obtain a short exact sequence

(3.7) 1→ K×/K×n
δ−→ H1(GK̄/K , µn)→ H1(GK̄/K , K̄

×)[n]→ 1.

However, by Hilbert’s Theorem 90, we know H1(GK̄/K , K̄
×) is trivial, and so we obtain an isomor-

phism of groups

(3.8) H1(GK̄/K , µn) ' K×/K×n.
Moreover, Galois cohomology also tells us how to calculate the isomorphism δ. It maps each
{α} ∈ K×/K×n to the cohomology class {σ 7→ βσ/β}, where β ∈ K̄× is such that βn = α.

4. Twisting

As we mentioned in Section 2, homogeneous spaces of an elliptic curve E are fundamentally curves
isomorphic to E over K̄. In this section, we begin to establish the connection between cohomology
and isomorphism classes of an elliptic curve.

Let C1/K and C2/K be curves, and let K̄(C1) denote the function field of C1. A morphism
φ : C1 → C2 is said to be defined over K if φ has the form [f0, f1, f2] for some regular fi ∈ K̄(C1)
such that there exists λ ∈ K̄× for which λfi ∈ K(C1) for i = 0, 1, 2.

Definition 4.1. A twist of an elliptic curve E/K is a smooth curve C/K isomorphic to E over K̄.
Further, identify two twists C1 and C2 of E if C1 and C2 are isomorphic over K. The set of twists
of E under this equivalence relation is denoted Tws(E/K).

The following result gives us a useful characterization for K-isomorphisms.

Lemma 4.2. Let V1 and V2 be projective varieties defined over K embedded in Pn(K̄) and let
φ : V1 → V2 be a morphism. Then φ is defined over K if and only if φσ = φ for all σ ∈ GK̄/K .

Proof. The forward implication is clear. So, suppose φσ = φ for all σ ∈ GK̄/K . Write φ = [f0, . . . , fn]

with fi ∈ K̄(V1). For each σ ∈ GK̄/K , we can then fix λσ ∈ K̄× such that fσi = λσfi for all i.
Consider the 1-cochain ξ : GK̄/K → K̄× given by σ 7→ λσ. We check that ξ is indeed a 1-cocycle:

λτσλτfi = λτσf
τ
i = (λσfi)

τ = fστi = λστfi.

However, by Hilbert’s Theorem 90, H1(GK̄/K , K̄
×) = 0, and so there exists α ∈ K̄× such that

λσ = ασ/α for all σ ∈ GK̄/K . Observe that

(α−1fi)
σ = α−σλσfi = α−1fi,

for all σ ∈ GK̄/K . So, we have reduced the equality in projective space to one in the function field
K̄(V1). The conclusion will then follow once we show if some f ∈ K̄[V1] satisfies fσ = f for all
σ ∈ GK̄/K , then f ∈ K[V1]. Let F ∈ K̄[X] := K̄[x1, . . . , xn] be such that F ≡ f (mod I(V1)).
Then consider the 1-cochain χ : GK̄/K → I(V1) given by σ 7→ F σ − F (it is indeed into I(V1)

because V1 is defined over K). Since

F στ − F = (F σ − F )τ + (F τ − F ),
9



χ is a 1-cocycle. By Hilbert’s Theorem 90, H1(GK̄/K , I(V1)) is trivial, and so there exists G ∈ I(V1)

such that F σ − F = Gσ − G for all σ ∈ GK̄/K . Thus, (F − G)σ = F − G, and so F − G ∈ K[X],
meaning that f ∈ K[V1]. �

This lemma gives us a way to “measure” how far an isomorphism φ : C → E is from being
defined over K. Denote by Aut(E) the set of isomorphisms E → E. We consider the 1-cochain
ξ : GK̄/K → Aut(E) given by ξσ = φσφ−1. Note that ξ is a 1-cocycle. Further, we can show ξ

is invariant (up to 1-coboundaries) over the equivalence class of φ in Tws(E/K) so that we get a
well-defined map Tws(E/K)→ H1(GK̄/K ,Aut(E)).

Proposition 4.3. Let C/K be a twist of E/K and let φ : E′ → E be an isomorphism. Let
ξ : GK̄/K → Aut(E) be the 1-cocycle ξσ = φσφ−1. Then the cohomology class {ξ} is determined by
the K-isomorphism class of C (and is therefore also independent of the choice of φ).

Proof. Let C ′/K be another twist of E such that C ′ and C are K-isomorphic. Fix an isomorphism
ψ : C ′ → E and a K-isomorphism π : C → C ′ (so πσ = π). Let α = φπψ−1. We have

ασ(ψσψ−1) = φσπσψ−1 = φσπψ−1 = (φσφ−1)α.

So, ψσψ−1 and φσφ−1 are off by a 1-coboundary, and thus belong to the same cohomology class. �

Denote this map by L : Tws(E/K)→ H1(GK̄/K ,Aut(E)). We have this surprising result:

Theorem 4.4. The map L is a bijection.

Proof. First let us prove injectivity. Suppose C/K and C ′/K are twists of E/K with isomorphisms
φ and ψ respectively, such that L({C}) = L({C ′}). Then there exists α ∈ Aut(E) such that

ασψσψ−1 = φσφ−1α.

We then claim the K̄-isomorphism π = φ−1αψ : C ′ → C is in fact a K-isomorphism. Indeed, we
have

πσ = (φ−1αψ)σ = (φ−1)σ(ασψσψ−1)ψ = (φ−1)σ(φσφ−1α)ψ = φ−1αψ = π,

and so π is a K-isomorphism by Lemma 4.2.
Proving surjectivity requires a bit more work, including a few facts from algebraic geometry.

Let us fix a 1-cocycle ξ : GK̄/K → Aut(E). We have to show there exists a twist C/K of E
that is mapped to {ξ} by L. The main idea is to define a field K̄(E)ξ isomorphic to K̄(E) by an
isomorphism Z : K̄(E)→ K̄(E)ξ that it is twisted by σ,

Z(f)σ = Z(fσξσ).

Note that this allows for a well-defined isomorphism since

(Z(f)σ)τ = Z(fσξσ)τ = Z((fσξσ)τξτ ) = Z(fστ (ξτσξτ )) = Z(fστξστ ) = Z(f)στ .

Let F = H0(GK̄/K , K̄(E)ξ) be the fixed field of K̄(E)ξ. We now argue that F is the function field
of the required twist C.

First, note that F ∩ K̄ = K. Indeed, suppose Z(f) ∈ F ∩ K̄. Then, since an isomorphism of
function fields restricts to an automorphism of K̄, we have f ∈ K̄ is a constant function. Thus,
because Z(f) is fixed by GK̄/K ,

Z(f) = Z(f)σ = Z(fσξσ) = Z(fσ),

for all σ ∈ GK̄/K , and so f ∈ K.
Next, we argue that the compositum of fields K̄ · F = K̄ ⊗K F is K̄(E)ξ. Showing this will

allow us to conclude that F has transcendence degree 1 over K (because E has dimension 1 and so
K̄(E) ' K̄(E)ξ has transcendence degree 1). So, take an element v ∈ K̄(E)ξ. We wish to show v
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can be written as a K̄-linear combination of elements in F . Since K̄(C)ξ is a discrete GK̄/K-module,
the stabilizer of v is a finite index subgroup in GK̄/K corresponding to a finite field extension L/K
such that K̄/L is Galois. Let L′/K be the Galois closure of L/K. Let {e1, . . . , en} be a K-basis for
L′ and let Gal(L′/K) = {σ1, . . . , σn}. Consider the elements wi ∈ K̄(E)ξ defined by

wi =
n∑
j=1

(eiv)σj ,

for i = 1, . . . , n. Note that each wi is invariant under the action of Gal(L′/K) (wi is just the trace
of eiv), and we already know GK̄/L′ fixes the ei and v, meaning that wi ∈ F . Further, note that
(det(eσii ))2 is the discriminant of the basis {e1, . . . , en} and so must be nonzero [11, Ch. 1, Prop.
2.8]. Thus, inverting the matrix (eσii ), we see that v (and the other vσi) are K̄-linear combinations
of the elements wi ∈ F .

So, from the fact that F ∩ K̄ = K and F has transcendence degree 1 over K, we conclude there
exists a smooth projective curve C/K with function field K(C) ' F . So, we have

K̄(C) ' K̄ · F = K̄(E)ξ ' K̄(E)

and thus C/K is isomorphic over K̄ to E/K (see [4, Ch. 1, §6]).
Finally, we need to check that L({C}) = {ξ}. Fix an isomorphism φ : C → E that gives us

the isomorphism Z : K̄(E) → K̄(E)ξ via f 7→ f ◦ φ. So, the condition Z(f)σ = Z(fσξσ) reads
fσφσ = fσξσφ, for all f ∈ K̄(C), implying that ξσ = φσφ−1, as required. �

5. Homogeneous Spaces

Definition 5.1. Let E/K be an elliptic curve. A homogeneous space for E/K is a smooth projective
curve C/K with a morphism µ : C×E → C over K defining a simply transitive group action on C:

(1) (Identity) µ(p,O) = p for all p ∈ C.
(2) (Associativity) µ(µ(p, P ), Q) = µ(p, P +Q) for all p ∈ C and P,Q ∈ E.
(3) (Transitivity) For all p, q ∈ C there is a unique P ∈ E such that µ(p, P ) = q.

We will denote the action of µ as an addition. With this interpretation, the second condition
reads

p+ (P +Q) = (p+ P ) +Q,

where we should be aware that on the left side, the first addition is using µ and the second is the
usual group law on E. The simple transitivity allows us to define a subtraction map ν : C×C → E
sending a pair (q, p) ∈ C × C to the unique P ∈ E such that p + P = q. We will similarly denote
the action of ν as q− p = P . We can easily verify that the intuition afforded by using the notations
+ and − will not lead us astray. For instance, is it true that, for points p0, p, q ∈ C,

(q − p0)− (p− p0) = q − p?
Indeed, suppose Q = ν(q, p0) and P = ν(p, p0). We want to show ν(q, p) = Q−P , i.e., p+(Q−P ) =
q. We have

p+ (−P +Q) = (p+ (−P )) +Q = p0 +Q = q,

as hoped.
We will now show that every homogeneous space is, in fact, a twist and that ν is a morphism

defined over K.

Proposition 5.2. Let E/K be an elliptic curve with a homogenous space C/K. Fix a point p0 ∈ C,
and define the map θ : E → C by P 7→ p0 + P .

(1) The map θ is an isomorphism defined over K(p0), and so C/K is a twist of E/K.
11



(2) For all p, q ∈ C,
q − p = θ−1(q)− θ−1(p).

(3) The subtraction map ν : C × C → E is a morphism defined over K.

Proof. (1) Note that µ is a morphism defined over K by definition. So, letting L = K(p0), for
any σ ∈ GK̄/L we have

θσ(P σ) = θ(P )σ = µ(p0, P )σ = µ(pσ0 , P
σ) = µ(p0, P

σ) = θ(P σ),

showing θσ = θ. Thus, by Lemma 4.2, θ is defined over K(p0). That θ is a bijection follows
from noting the map C → E : q 7→ q− p0 is an inverse for θ. Once we show ν is a morphism
below, we will also have established θ is an isomorphism.

(2) We compute

θ−1(q)− θ−1(p) = (q − p0)− (p− p0) = q − p.
(3) Since we already know subtraction on E is a morphism [16, Ch. 3, Thm. 3.6], by ν(q, p) =

θ−1(q) − θ1(p), we see ν is a morphism too. To see ν is defined over K, we use that µ
subtraction in E are defined over K:

(q − p)σ = (θ−1(q)− θ1(p))σ

= θ−1(q)σ − θ−1(p)σ

= (q − p0)σ − (p− p0)σ

= (qσ − pσ0 )− (pσ − pσ0 )

= q − p.
�

We now define an equivalence relation on the homogeneous spaces of E/K that refines the identifi-
cation up toK-isomorphism we imposed on the set of all twists. Let C/K and C ′/K be homogeneous
spaces of an elliptic curve E/K. We identify C and C ′ if there is a K-isomorphism π : C → C ′ such
that

π(p+ P ) = π(p) + P,

for all p ∈ C and P ∈ E. The set of equivalence classes of homogeneous spaces of E/K is called the
Weil-Châtelet group WC(E/K) for E/K. We will shortly see the group structure on WC(E/K).
For example, {E/K} is itself an equivalence class of WC(E/K) corresponding to the identity
automorphism (or translation by a fixed point P ∈ E) playing the role of the identity, and is called
the trivial class.

Next, we have the first true indication that all this study of twisting is relevant to computing
rational points.

Proposition 5.3. Let C/K be a homogeneous space for an elliptic curve E/K. Then C/K is in
the trivial class if and only if C has at least one K-rational point.

Proof. Suppose C/K is in the trivial class, so that there exists a K-isomorphism π : E → C. Since
O ∈ E(K), we see that π(O) is a rational point on C since

π(O)σ = πσ(Oσ) = π(O),

for all σ ∈ GK̄/K .
Conversely, suppose p0 ∈ C is a K-rational point. By Proposition 5.2, we know θ : E → C given

by P 7→ p0 + P is an isomorphism over K(p0) = K. Further, compatibility with the group action
of E

θ(P +Q) = θ(P ) +Q,

for all P,Q ∈ E, holds by the associativity of the group action of E on C. �
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Example 5.4. Let Fq be the finite field with q elements and let E/Fq be an elliptic curve. As an
immediate application of Proposition 5.3, we will calculate that WC(E/Fq) is trivial. Let C/Fq be
a homogeneous space of E/Fq and we wish to find a Fq-rational point on C . Since C is isomorphic
to E over F̄q, we can make C an elliptic curve over F̄q by setting any point O ∈ C(F̄q) to be the
distinguished point. Consider the Frobenius morphism φ : P2(F̄q) → P2(F̄q) that sends a point
[X,Y, Z] 7→ [Xq, Y q, Zq]. Recall that given a point P ∈ P2(F̄q), P belongs to P2(Fq) if and only if
φ(P ) = P . Since C is defined over Fq, we get the Frobenius morphism φ : C → C.

Let P0 = φ(O) − O and define ψ by letting ψ(P ) = φ(P ) − P0, so that we get a morphism
ψ : C → C that preserves O (i.e., ψ is an isogeny of C). If we let λ−P0 denote the translation-
by-(−P0) map, then ψ = λ−P0 ◦ φ. We claim that ψ is inseparable. Let ω denote the invariant
differential of C. Note that since φ is inseparable [16, Ch. 2, Prop. 2.11], we have the pullback of
ω by ψ is

ψ∗ω = (λ−P0 ◦ φ)∗ω = λ∗−P0
(φ∗ω) = λ∗−P0

(0) = 0,

showing ψ is indeed inseparable [16, Ch. 2, Prop. 4.2]. Hence, letting 1 denote the identity map
C → C, we have by linearity [16, Ch. 3, Thm. 5.2]

(1− ψ)∗ω = ω − ψ∗ω = ω 6= 0,

and so 1− ψ is separable. Thus, the morphism 1− ψ must be nonzero and hence surjective [4, Ch.
2, Prop. 6.8]. So, there exists a point Q ∈ C(F̄q) such that (1− ψ)(Q) = P0. This means

φ(Q) = ψ(Q) + P0 = (Q− P0) + P0 = Q,

implying that Q ∈ C(Fq) and so C is in the trivial class of WC(E/Fq). A similarly neat result
holds for elliptic curves over R (see [16, Ch. 10, Ex. 10.7]).

We now show WC(E/K) is in bijection with H1(GK̄/K , E), and as a result also demonstrate
the group law on WC(E/K) piggybacking off the group structure of H1(GK̄/K , E). The following
lemma records a useful calculation before we proceed.

Lemma 5.5. Let C/K and C ′/K be equivalent homogeneous spaces via a K-isomorphism π : C →
C ′. Then, for any points p, q ∈ C,

π(q)− π(p) = q − p.

Proof. We have

π(q)− π(p) = (π(q)− π(p))− (q − p) + (q − p)
= [π(q)− (π(p) + (q − p))] + (q − p)
= [π(q)− π(p+ (q − p))] + (q − p)
= (π(q)− π(q)) + (q − p)
= O + (q − p)
= q − p.

�

Theorem 5.6. Let E/K be an elliptic curve. The setsWC(E/K) and H1(GK̄/K , E) are in bijection
via the map W sending the class of a homogeneous space C/K to the cohomology class of the 1-
cocycle GK̄/K → E : σ 7→ pσ0 − p0 for any point p0 ∈ C.

Proof. First, let us check that W is well-defined. Suppose C/K and C ′/K belong to the same class
in WC(E/K), so that there exists a K-isomorphism π : C → C ′ compatible with the action of E.
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Fix a point q0 ∈ C ′. So, using Lemma 5.5,

pσ0 − p0 = π(pσ0 )− π(p0)

= (qσ0 − q0)− (qσ0 − q0) + (π(p0)σ − π(p0))

= (qσ0 − q0) + [(π(p0)σ − qσ0 )− (π(p0)− q0)]

= (qσ0 − q0) + [(π(p0)− q0)σ − (π(p0)− q0)],

showing that pσ0 − p0 and qσ0 − q0 differ by the 1-coboundary generated by π(p0) − q0, and thus
belong to the same cohomology class in H1(GK̄/K , E). This also shows the choice of p0 does not
affect the image in W.

To show injectivity of W, suppose p0 ∈ C and q0 ∈ C ′ are points on homogeneous spaces such
that there exists P0 ∈ E for which

pσ0 − p0 = (qσ0 − q0) + (P σ0 − P0),

for all σ ∈ GK̄/K . Take the isomorphism π : C → C ′ given by p 7→ q0 + (p− p0) +P0 (this addition
is well-defined by associativity). To show that π is defined over K, we use Lemma 4.2, and compute

π(p)σ = qσ0 + (pσ − pσ0 ) + P σ0

= qσ0 + (pσ − pσ0 ) + (P σ0 − P0) + P0

= q0 + (qσ0 − q0) + (pσ − pσ0 ) + (P σ0 − P0) + P0

= q0 + (pσ − pσ0 ) + [(qσ0 − q0) + (P σ0 − P0)] + P0

= q0 + (pσ − pσ0 ) + (pσ0 − p0) + P0

= q0 + (pσ − p0) + P0

= π(pσ).

Thus, C and C ′ are equivalent homogeneous spaces.
Showing the surjectivity ofW uses a rather beautiful idea and our hard work in proving Theorem

4.4. Fix a 1-cocycle ξ : GK̄/K → E. Note that E can be canonically embedded into Aut(E) since
each point P ∈ E corresponds to the translation-by-P map λP , which is an automorphism [16, Ch.
3, Thm. 3.6]. So, let χ : GK̄/K → Aut(E) be the 1-cochain σ 7→ λ−ξσ . We check that χ is a
1-cocycle:

χστ = λ−ξστ = λ−ξτσ−ξτ = λ−ξτ ◦ λτ−ξσ = λτ−ξσ ◦ λ−ξτ = χτσχτ .

(Taking translation by −ξσ rather than ξσ is a necessary trick in order to end up with ξ as the image
in W.) Using Theorem 4.4, we fix a twist of C/K of E/K isomorphic via φ : C → E satisfying

φσφ−1 = χσ

for all σ ∈ GK̄/K and show that W({C}) = {ξ}. To show C is a homogeneous space of E, we need
to specify a simply transitive action defined over K of E on C. We claim this is given by

µ : C × E → C, (p, P ) 7→ φ−1(φ(p) + P ).

Let us check the conditions of Definition 5.1. Let p ∈ C and P,Q ∈ E:

(1) µ(p,O) = φ−1(φ(p) +O) = φ−1(φ(p)) = p for all p ∈ C.
(2) µ(µ(p, P ), Q) = µ(φ−1(φ(p) +P ), Q) = φ−1(φ(φ−1(φ(p) +P )) +Q) = φ−1(φ(p) +P +Q) =

µ(p, P +Q).
(3) For q ∈ C, clearly P = φ(q)− φ(p) is the unique point in E such that µ(p, P ) = q.

14



We also need to check µ is defined over K, which we do as usual, making good use of φσφ−1 = χσ:

µσ(pσ, P σ) = µ(p, P )σ

= (φ−1)σ(φ(p)σ + P σ)

= (φσ)−1(φσ(pσ) + P σ)

= (φσ)−1(χσ(φ(pσ)) + P σ)

= (φσ)−1(φ(pσ)− ξσ + P σ)

= φ−1(χ−1
σ (φ(pσ)− ξσ + P σ))

= φ−1((φ(pσ)− ξσ + P σ) + ξσ)

= φ−1(φ(pσ) + P σ) = µ(pσ, P σ).

This verifies that C is indeed a homogeneous space of E.
Finally, we need to check that the image of {C} under W is indeed {ξ}.
We pick the point p0 = φ−1(O) and compute

pσ0 − p0 = φ−1(O)σ − φ−1(O)

= (φ−1)σ(O)− φ−1(O)

= φ−1(χ−1
σ (O))− φ−1(O)

= φ−1(O + ξσ)− φ−1(O)

= ξσ,

the last equality following from the very definition of subtraction in C. �

Example 5.7. Let us now pause to see an example of what a homogeneous space looks like. Fix
an elliptic curve E/Q that has a rational torsion point of order 2. Since a point T of order 2 has
y-coordinate equal to zero, by an appropriate linear change of coordinates, T can be moved to (0, 0).
In other, words E/Q has the form

y2 = x3 + ax2 + bx.

We will be using this Weierstrass form for our computations in Section 8 too. Let us consider the
following 1-cocycle ξ ∈ H1(GQ̄/Q, E). Fix a quadratic extension Q(

√
d)/Q with d squarefree. We

know that each σ ∈ GQ̄/Q restricts to an element of Gal(Q(
√
d)/Q), and thus either fixes

√
d or

sends it to −
√
d. Define ξσ to be O if σ fixes

√
d, otherwise ξσ = T . It can be checked easily that

this is really a 1-cocycle. Since both O and T are 2-torsion points, observe that ξ ∈ H1(GQ̄/Q, E[2])
− for this reason, this example will be very important in Section 7. Now, we would like to know the
homogeneous space C corresponding to ξ. As we saw in the proof above, the required homogeneous
space is isomorphic E via a φ : C → E satisfying

φσφ−1 = χσ,

where χσ is the 1-cocycle corresponding to translation by −ξσ. Since T = −T and O = −O,
translating by −ξσ is really the same as translating by ξσ. Now, translation by O is trivial and
translation by T = (0, 0) can be calculated to be

(x0, y0) 7→ (b/x0,−by0/x
2
0).

So, from the proof of Theorem 4.4, if σ is the nontrivial automorphism on Q(
√
d), we know the

isomorphism of function fields Z : Q̄(E)→ Q̄(E)χ is twisted in the following manner:

Z(x)σ = Z(xσχσ) = b · Z(1/x),
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and
Z(y)σ = Z(yσχσ) = −b · Z(y/x2).

When σ is trivial on Q(
√
d), we see Z(x)σ = Z(x) and Z(y)σ = Z(y). So, let X = Z(x) and

Y = Z(y). Then, note that the functions

z =
√
dX/Y and w =

√
d(X − b/X)(X/Y )2

are invariant under the action of GQ̄/Q. Indeed, it can be checked that the fixed subfield of Q̄(E)χ

is Q(
√
d)(z, w). In other words, these functions will end up being the coordinate functions for our

homogeneous space. The alert reader might complain why not just take w =
√
d(X − b/X)? The

(somewhat unsatisfactory) answer is that we eventually want a hyperelliptic curve since that allows
us to use general facts about such a curve and not worry about things like smoothness. We give an
alternate derivation of Cd in Section 7. Indeed, we can eliminate X and Y to obtain the relation
between z and w:

d
(w
z2

)2
=

(
X − b

X

)2

=

(
X +

b

X

)2

− 4b

=

(
Y 2

X2
− a
)2

− 4b

=

(
d

z2
− a
)2

− 4b,

and we obtain the hyperelliptic curve

C : dw2 = d2 − 2adz2 + (a2 − 4b)z4.

From our construction, we have the morphism

ψ : E → C, (x, y) 7→ (z, w) = (
√
dX/Y,

√
d (X − b/X) (X/Y )2).

In fact, since we can also compute X and Y in terms of z and w, we can calculate the inverse
ψ−1 to show ψ is an isomorphism and check that ψ−1 : C → E actually corresponds to our chosen
1-cocycle χσ. We omit those verifications here.

6. The Selmer and Shafarevich-Tate Groups

We can now apply the theory of homogeneous spaces we have developed to the problem of
computing rational points. For concreteness, we will work over K = Q, though the arguments
apply almost verbatim over any number field. Throughout this section and the next, let G = GQ̄/Q.

Let E/Q and E′/Q be elliptic curves. Recall that an isogeny φ : E → E′ is a morphism that
preserves the point at infinity φ(OE) = OE′ . Fix a nonzero isogeny φ : E → E′ defined over Q.
Then since a nonconstant morphism between curves is surjective [4, Ch. 2, Prop. 6.8], we have the
short exact sequence of G-modules

0→ E[φ]→ E
φ−→ E′ → 0.

Applying Galois cohomology (3.4) to this sequence, we obtain the following long exact sequence:

0→ E(Q)[φ]→ E(Q)
φ−→ E′(Q)

δ−→ H1(G,E[φ])→ H1(G,E)
φ−→ H1(G,E′).

16



Isolating H1(G,E[φ]), similar to how we deduced (3.7), we then obtain the short exact sequence

(6.1) 0→ E′(Q)/φ(E(Q))
δ−→ H1(G,E[φ])→ H1(G,E)[φ]→ 0.

This isomorphism is useful because, by Theorem 5.6, we can replace the last term byWC(E/Q)[φ],
which we saw in Proposition 5.3 encodes whether a rational point exists on a homogeneous space
of E. Now, our main aim is to compute E′(Q)/φ(E(Q)), that injects into H1(G,E[φ]), and so it
is enough to compute the kernel of the map H1(G,E[φ]) → WC(E/Q)[φ]. However, the trouble
remains that computing this kernel involves at minimum determining the trivial class inWC(E/Q),
a problem that is in some sense at least as hard as determining E(Q)! The central insight is that
the same exact sequence holds for a completion Qp of Q, where by applying the useful Hensel’s
Lemma [11, Ch. 2, Lem. 4.6], the problem reduces to a computation over Fp. Indeed, since this is
such a key idea, let us quote Neukirch here:

The raison d’être of valuation theory, however, is not to reformulate ideal-theoretic
knowledge, but rather, as has been stressed earlier, to provide the possibility of
passing from the extension L/K to the various completions Lw/Kv where much
simpler arithmetic laws apply. Let us also emphasize once more that completions
may always be replaced with henselizations. [11, Ch. 2, §8, pp. 165]

So, we do the first step of descent, by considering the analogue of (6.1) for a completion Qp.
For each prime p, fix an extension of |·|p to Q̄ and let Gp ⊆ G be the decomposition group of the
extension (fixing a different extension of p will only replace Gp by a conjugate). The important fact
about Gp is that Gp ' Gal(Q̄p/Qp) [11, Ch. 2, Prop. 9.6] and so by exactly the same argument as
above, we obtain the exact sequence

(6.2) 0→ E′(Qp)/φ(E(Qp))
δ−→ H1(Gp, E[φ])→ H1(Gp, E)[φ]→ 0.

Before proceeding further, let us first identify the main objects that will play a central role in the
descent.

Because Gp ⊆ G and E(Q̄) ⊆ E(Q̄p), by restricting cohomology we obtain the map

H1(G,E[φ])→ H1(G,E)[φ]→ H1(Gp, E)[φ].

Using the identification W of Theorem 5.6, we then have the map

H1(G,E[φ])→WC(E/Q)[φ]→WC(E/Qp)[φ].

Since a rational solution P ∈ C(Q) of a curve C trivially gives a Qp-rational solution for each
p, an obvious obstruction to the existence of a rational solution of C is the nonexistence of a Qp-
rational solution for even a single p. Thus, intuitively, we want to study all the WC(E/Qp)[φ]
simultaneously, and so we extend the map to

(6.3) H1(G,E[φ])→WC(E/Q)[φ]→WC(E/Qp)[φ]→
∏
p

WC(E/Qp)[φ],

where the product runs over the primes (over an arbitrary number field, we would take the product
over all non-archimedean absolute values, which for Q are just the p-adic absolute values for primes
p by Ostrowski’s Theorem [11, Ch. 2, Thm. 4.2]).

Definition 6.4. The subgroup of H1(G,E[φ]) that is the kernel of the map in (6.3) is called the
φ-Selmer group of E/Q and is denoted S(φ)(E/Q).

As we noted earlier, the fundamental reason why determining rational points on elliptic curves is
a hard problem is the failure of the local-global principle. In particular, we can have a homogeneous
space that has a Qp-rational solution over each completion Q̄p but fails to have a Q-rational solution.
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One example of such a homogeneous space due to Lind [8] and Reichardt [13] is the innocent-looking
curve

2w2 = 1− 17z4.

By Proposition 5.3, we know a homogeneous space maps to the trivial class in some WC(E/Qp)
if and only if it has a Q̄p-rational solution. Thus, observe that we can detect the failure of the
local-global principle via the kernel of the natural map

(6.5) WC(E/Q)→WC(E/Qp)→
∏
p

WC(E/Qp).

Definition 6.6. The subgroup of WC(E/Q) that is the kernel of the map in (6.5) is called the
Shafarevich-Tate group of E/Q and is denoted X(E/Q)1.

The following lemma explains the relationship between the Selmer and Shafarevich-Tate groups.

Lemma 6.7. Let E/Q and E′/Q be elliptic curves and let φ : E/Q→ E′/Q be an isogeny defined
over Q. We have the following short exact sequence:

0→ E′(Q)/φ(E(Q))
δ−→ S(φ)(E/Q)→X(E/Q)[φ]→ 0.

Proof. The proof is mainly unwinding the definitions and applying the sequence (6.1). (Of course,
one should also verify that these induced maps are well-defined but that is straightforward.)

The injectivity ofE′(Q)/φ(E(Q))
δ−→ S(φ)(E/Q) follows directly from the injectivity ofE′(Q)/φ(E(Q))

δ−→
H1(G,E[φ]).

Suppose that {C} ∈ X(E/Q)[φ], so that {C} becomes trivial in each completion Qp. Since
H1(G,E[φ]) → WC(E/Q)[φ] is surjective (6.1), fix a cohomology class {ξC} ∈ H1(G,E[φ]) map-
ping to {C}. But then under the mapping (6.3) we have

{ξC} 7→ {C} 7→
∏
p

trivial class,

and so ξ ∈ S(φ)(E/Q). Thus, we have the surjectivity of S(φ)(E/Q)→X(E/Q)[φ].
Next, suppose {ξ} is in the image of E′(Q)/φ(E(Q))

δ−→ S(φ)(E/Q). Then, by (6.1), we know
{ξ} belongs to the kernel of the map S(φ)(E/Q)→X(E/Q)[φ]. Conversely, suppose {ξ} is in the
kernel of this map. But then, {ξ} is also in the kernel of the map H1(G,E[φ])→WC(E/Q), which
means, by (6.1), that {ξ} is in the image of E′(Q)/φ(E(Q))

δ−→ S(φ)(E/Q). �

Now, we are interested in computing S(φ)(E/Q) (see our discussion following (6.1)). Suppose
E′ = E and φ = [m] is the multiplication-by-m map. The weak Mordell-Weil Theorem tells us that
E(Q)/mE(Q) is a finite order subgroup of S(m)(E/Q). As we will now see, in fact, S(φ)(E/Q) for
any isogeny φ is a finite group (which also implies the weak Mordell-Weil Theorem). This proof is
important because it hints at how to compute the Selmer group.

Theorem 6.8. Let E/Q and E′/Q be elliptic curves and let φ : E/Q→ E′/Q be an isogeny defined
over Q. The φ-Selmer group S(φ)(E/Q) is finite.

Proof. Let Ip ⊆ Gp be the inertia subgroup corresponding to the extension Q̄p/Qp. A cohomology
class {ξ} ∈ H1(G,E[φ]) is said to be unramified at p if it becomes trivial in H1(Ip, E[φ]) (via the
restriction map). The strategy is to show that all elements of S(φ)(E/Q) are unramified at each

1It is worth mentioning here the following cultural factoid due to Cassels [2, Ch. 23, Footnote 29]: “This [the
notation X] is the author’s [Cassels’] most lasting contribution to the subject. The original notation was TS, which,
Tate tells me, was intended to continue the lavatorial allusion of WC. The Americanism "tough shit" indicates the
part that is difficult to eliminate.”
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prime p (specifically those at which E has stable reduction) and then show that any such cohomology
group must be finite. We will not argue the latter part here as it is essentially a result of basic
class field theory and thus it would take us too far afield (an alternate argument is in [16, Ch. 10,
Lemma 4.3]).

So, fix a cohomology class {ξ} ∈ S(φ)(E/Q) and let p be any prime not dividing m := deg(φ)

and for which E/Q has stable reduction. Then, by the definition of S(φ)(E/Q), {ξ} becomes the
trivial class in WC(E/Qp), which is equivalent to saying {ξ} becomes the trivial cohomology class
in H1(Gp, E). Thus, we can fix a point P ∈ E(Q̄p) such that

ξσ = P σ − P,

for all σ ∈ Gp. Moreover, by (6.2), we can assume P σ −P ∈ E[φ] for all σ ∈ Gp. We want to argue
that ξ is in the trivial class in H1(Ip, E[φ]) too. Consider the reduction map

E(Q̄) ↪→ E(Q̄p)→ Ẽ(F̄p),

where Ẽ is the curve obtained after reducing the coefficients of E in F̄p (remember a point on
an elliptic curve lives in projective space and so we can clear denominators such that the point’s
projective coordinates land inside the ring of integers of Q̄p, allowing for reduction modulo the
maximal ideal). Since the elements of Ip (by definition) fix the elements of F̄p, we have

P σ − P ≡ O (mod F̄p),

for all σ ∈ Ip.
Now, consider the dual isogeny of φ̂ : E′ → E, which has the property that φ̂ ◦ φ = [m] [16, Ch.

3, Thm. 6.1]. Since P σ − P ∈ E[φ], for all σ ∈ Gp, and φ̂(O) = O, we see that P σ − P ∈ E[m]
for all σ ∈ Ip ⊆ Gp. Now, since E(Q̄)[m] is finite (it has size exactly m2 since we are in zero
characteristic), we can fix a finite extension L/Q that contains the coordinates of points in E[m].
Because E has stable reduction for p, by Proposition 2.2, we know the reduction map

E(L)[m] ↪→ E[Lp][m]→ Ẽ(Fp)

is injective. However, we know P σ − P ∈ E(L)[m] for each σ ∈ Ip reduces to O, and so we must
have P σ − P = O for all σ ∈ Ip. Thus, {ξ} does indeed become the trivial cohomology class in
H1(Ip, E[φ]), and so all elements of S(φ)(E/Q) are unramified at all primes with stable reduction.
As we noted above, this can be used to then show that S(φ)(E/Q) is finite. �

Let us denote by B(φ) the set of “bad” primes: those at which E has bad reduction or those
that divide deg(φ). Further, for any G-module M , let H1(G,M ;B(φ)) be the set of elements of
H1(G,M) that are unramified at all primes except possibly those in B(φ). Then we proved just
now that S(φ)(E/Q) ⊆ H1(G,E[φ];B(φ)) and this gives at least a start on our quest to compute
the Selmer group.

Example 6.9. Indeed, to see this is actually significant progress, let us take E′ = E and φ = [2].
Further, let E[2] ⊆ E(Q). Now, E[2] is isomorphic to Z/2Z× Z/2Z [16, Ch. 3, Cor. 6.4] and thus
can be identified as a group with µ2 × µ2, where µ2 is the subgroup of second roots of unity. Since
E[2] ⊆ E(Q) and µ2 ⊆ Q, the identification holds as a G-module too. Using the isomorphism (3.8),
we know that

(6.10) H1(G,E[2]) ' H1(G,µ2 × µ2) ' H1(G,µ2)×H1(G,µ2) ' Q×/Q×2 ×Q×/Q×2.

Take {α} ∈ Q×/Q×2, which is sent by the isomorphism δ to the cohomology class of ξσ = βσ/β
for some β ∈ Q̄× such that β2 = α. Suppose that {ξ} ∈ H1(G,µ2;B(2)). So, if we let p be a prime

19



not in B(2), then ξ becomes trivial in H1(Ip, µ2), allowing us to fix an element ζ ∈ µ2 such that
ξσ = ζσ/ζ for all σ ∈ Ip. Then we have

(β/ζ)σ = β/ζ,

for all σ ∈ Ip, implying that the action of Ip on the extension Qp(βζ
−1) is trivial and so Qp(βζ

−1)/Qp

is an unramified extension (recall that the fixed subfield of Ip in Q̄p is the largest unramified extension
of Qp). Write α = pnu for some n ∈ Z and unit u ∈ Z×p . We claim that 2 | n. Since multiplying
or dividing α by p2 leaves the extension Qp(βζ

−1)/Qp unchanged, we can assume 0 ≤ n < 2 and
we are claiming n = 0 in order for Qp(βζ

−1)/Qp to be unramified. But, indeed, if n > 0, then the
equation x2 − α (the minimal polynomial of βζ−1) reduces to x2 (mod p), which is not separable
over Fp, contradicting that the extension is unramified. Indeed, the converse is also true. Let n = 0,
so that α ∈ Z×p is a unit, then the equation x2 − α (mod p) is separable over Fp since it is coprime
to its formal derivative

x · 2x− 2 · (x2 − α) = 2α,

where 2α is a unit because p - 2. Thus, by Hensel’s Lemma, the degree of the residue field extension
matches that of Qp(βζ

−1)/Qp, and so Qp(βζ
−1)/Qp is unramified. We have thus proved that

H1(G,µ2;B(2)) can be identified with the elements {α} of Q×/Q×2 for which 2 | ordp(α) whenever
p 6∈ B(2). Denote this set of classes in Q×/Q×2 by Q(B(2), 2).

So, continuing from (6.10), we can identify H1(G,E[2];B(2)) with Q(B(2), 2)×Q(B(2), 2). Ob-
serve that Q(B(2), 2) is finite because B(2) is finite. For example, suppose B(2) = {2, 3}. Then
{±1,±2,±3,±6} is a complete set of unique class representatives for Q(B(2), 2). Thus, we need
to only examine a finite number of homogeneous spaces (those corresponding to the points of
Q(B(2), 2)×Q(B(2), 2)) to determine S(2)(E/Q). This method can be developed further to calcu-
late the weak Mordell-Weil group because all that remains is to calculate the homogeneous spaces
corresponding to each element of H1(G,E[2]). We will not pursue that line of attack here, but see
[16, Ch. 10, Prop. 1.4] for a derivation of this method without cohomology. Rather, we will assume
only a single rational torsion point of order 2 and take φ to be an isogeny that has the rational
torsion point in its kernel.

7. Descent via Degree-2 Isogenies

Let E/Q be an elliptic curve that has rational torsion point T of order 2, so that after moving T
to (0, 0), we can assume a Weierstrass form

E : y2 = x3 + ax2 + bx.

We take E′ to be the elliptic curve

E′ : Y 2 = X3 − 2aX2 + (a2 − 4b)X,

and φ : E → E′ to be the isogeny

(x, y) 7→ (y2/x2, y(b− x2)/x2).

Note that E[φ] = {O, (0, 0)} and so φ has degree 2. Further, the dual isogeny φ̂ : E′ → E is given
by

(X,Y ) 7→ (Y 2/4X2, Y ((a2 − 4b)−X2)/8X2),

which too has degree 2 and satisfies φ̂◦φ = [2]. We need to find a characterization (more useful than
the definition) for when an element of H1(G,E[φ]) is in S(φ)(E/Q). In Theorem 6.7, we showed
that S(φ)(E/Q) ⊆ H1(G,E[φ];B(φ)). Note that here B(φ) consists of 2 (= deg(φ)) and any other
prime that divides the discriminant ∆(E). It can be calculated that

∆(E) = 16b2(a2 − 4b),
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and so B(φ) consists of the primes dividing 2b(a2 − 4b). What is H1(G,E[φ];B(φ))? We discussed
this for E[2] and in this case it is even simpler. We know E[φ] = {O, (0, 0)}, and so E[φ] ' µ2 as
G-modules. Thus, using 3.8, we have

(7.1) H1(G,E[φ]) ' H1(G,µ2) ' Q×/Q×2.

Then, as we showed in Example 6.9, H1(G,E[φ];B(φ)) can be identified with Q(B(φ), 2), which
consists of those classes {α} of Q×/Q×2 for which α has even valuation at the primes not in B(φ),
i.e., those not dividing 2b(a2−4b). All in all, this means we need only be concerned with the classes
of Q×/Q×2 represented by a squarefree d sharing a prime factor with 2b(a2 − 4b). So, we need to
determine which elements of Q(B(φ), 2) end up being in S(φ)(E/Q). Let us fix {d} ∈ Q(B(φ), 2)
with d squarefree. What element does {d} correspond to in H1(G,E[φ];B(φ))? Walking back the
last isomorphism of 7.1, in H1(G,µ2), {d} corresponds to the cohomology class of

σ 7→
√
d
σ
/
√
d =

{
1 σ is trivial on Q(

√
d)

−1 σ is nontrivial on Q(
√
d),

where
√
d ∈ Q̄ is a fixed squareroot of d. Then, going back the first isomorphism, we see {d}

corresponds to the cohomology class {ξ} ∈ H1(G,E[φ]) of

ξ : σ 7→

{
O σ is trivial on Q(

√
d)

(0, 0) σ is nontrivial on Q(
√
d).

Note that ξ is precisely the 1-cocycle we considered in Example 5.7, so we know the corresponding
homogeneous space Cd ∈WC(E/Q) is

Cd : dw2 = d2 − 2adz2 + (a2 − 4b)z4.

Thus, by definition, {d} ∈ S(φ)(E/Q) if and only if Cd becomes trivial in
∏
pWC(E/Qp) i.e., Cd

has a Qp-rational point for each prime p.
Let us see an example of this correspondence. We have the point T = (0, 0) ∈ E′(Q). According

to Lemma 6.7, {T} is mapped to some {ξ} ∈ S(φ)(E/Q) by the connecting homomorphism δ. More
specifically, ξ is a 1-cocycle given by ξσ = P σ − P , where P ∈ E is such that φ(P ) = T . Looking
at the formula for φ, we see y(P ) = 0 and so x(P ) is one of the roots

−a±
√
a2 − 4b

2
.

Let us take the + sign (taking the − sign will simply result in a cohomologous 1-cocycle). So, if σ
is trivial on the extension Q(

√
a2 − 4b), we get

ξσ = P σ − P = P − P = O.

Otherwise, σ acts nontrivially on Q(
√
a2 − 4b), and therefore

P σ − P =

(
−a+

√
a2 − 4b

2
, 0

)σ
−

(
−a+

√
a2 − 4b

2
, 0

)

=

(
−a−

√
a2 − 4b

2
, 0

)
+

(
−a+

√
a2 − 4b

2
, 0

)
= (0, 0).

So, {(0, 0)} ∈ E′(Q)/φ(E(Q)) corresponds to the class of d = a2− 4b in Q(B(φ), 2), and as a result
we always know a2−4b is there in S(φ)(E/Q). Similarly, the point O ∈ E′(Q) gives us the class of 1

(which we knew should be case because S(φ)(E/Q) is a subgroup of Q(B(φ), 2) or just by examining
C1, we see (1, 0) is always a solution).
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Viewing things in light of this characterization, we also have a more satisfactory explanation for
the equation of Cd. This also connects to strategy of “coverings” we had explained in Section 2.
Note that d 7→ Cd is a map K(B(φ), 2)→WC(E/Q)[φ]. By the short exact sequence 6.1, we know
the kernel of this map is precisely the image of E′(Q)/φ(E(Q)) under δ, and so Cd is trivial in
WC(E/Q) if and only if there exists a point P ′ ∈ E′(Q) such that δ(P ′) = d. In other words, a
rational point exists on Cd if and only if d corresponds to a rational point on E′(Q). Taking an
arbitrary rational point P ′ ∈ E′(Q), we saw it corresponds to a 1-cocycle σ : P σ − P , where P ∈ E
is such that φ(P ) = P ′. Letting P = (x, y) and P ′ = (X,Y ) 6= (0, 0), we see

X = y2/x2 and Y = y(b− x2)/x2,

and so substituting x2 = y2/X into second relation, we get

y2 + Y y − bX = 0.

Then, since X,Y ∈ Q, P ′ corresponds to
√
d =
√
Y 2 + 4bX. But, using the equation of E′, we have

Y 2 + 4bX = (X3 − 2aX2 + (a2 − 4b)X) + 4bX = X(X − a)2.

Thus, P ′ = (X,Y ) corresponds to d = X(X − a)2 ≡ X (mod Q×2).
Now, suppose Cd (with d 6= 1) is trivial in WC(E/Q). Then, there exists a point P ′ = (X,Y ) ∈

E′(Q) such that d = Xq2, for some q ∈ Q×. Substituting X = d/q2 into E′, we obtain

Y 2 =
d3

q6
− 2a

d2

q4
+ (a2 − 4b)

d

q2
,

and so
q6Y 2

d
= d2 − 2adq2 + (a2 − 4b)q4.

Taking w = q3Y/d and z = q, we recover the form of Cd we had derived earlier! This method of
derivation also directly tells us how to compute a rational point (X,Y ) on E′(Q), given a rational
solution (z, w) on Cd :

(7.2) (X,Y ) = (d/z2, dw/z3).

We saw the Tate-Shafarevich group X(E/Q) detects the failure of the global-local principle.
SupposeX(E/Q) was infinite. This would mean the existence of an infinite number of nonequivalent
homogeneous spaces of E that have a Qp-rational point for each prime p but have no rational
point. Consequently, there would be nothing stopping the φ-torsion in X(E/Q) from being infinite,
effectively destroying any hopes of using Lemma 6.7 (at least in an easy manner) to compute
E′(Q)/φ(E(Q)) from S(φ)(E/Q)! However, it is conjectured that in general X(E/Q) is finite and
strong evidence for this has been collected. The most direct evidence comes from, for example,
Kolyvagin’s [6] and Rubin’s [14] work showing the finiteness of X for certain families of elliptic
curves. In fact, as we will see in Section 8, it can be the case that X(E/Q)[φ] = 0, which, in light
of Lemma 6.7, implies

E′(Q)/φ(E(Q)) ' S(φ)(E/Q),

and so no additional work is required to compute E′(Q)/φ(E(Q)) from S(φ)(E/Q). But we have
ignored one question completely: how exactly does computing E′(Q)/φ(E(Q)) help us compute
E′(Q)/2E(Q)? After all, we had earlier motivated the Selmer group with the promise that it will
help us compute E′(Q)/φ(E(Q)) when we take φ = [2], but we have taken φ to be a different
isogeny. Here is where the dual isogeny comes into play. Observe that since φ̂ ◦ φ = [2], we have
the natural surjective map

E(Q)/2E(Q)→ E(Q)/φ̂(E′(Q)).
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So, it suffices to compute the kernel of this map, which is simply the image of the map

φ̂ : E′(Q)/φ(E(Q))→ E(Q)/2E(Q).

(Note that this map is which is well-defined because φ̂ ◦φ = [2] and φ̂ is an isogeny defined over Q.)
The kernel of φ̂, in turn, is E′(Q)[φ̂]/(E′(Q)[φ̂] ∩ φ(E(Q))). We claim that

E′(Q)[φ̂] ∩ φ(E(Q)) = φ(E(Q)[2]).

Suppose P ′ ∈ φ(E(Q)[2]). Then, obviously P ′ ∈ φ(E(Q)) but also, fixing a point P ∈ E(Q)[2] such
that φ(P ) = P ′, we have

φ̂(P ′) = φ̂(φ(P )) = [2]P = O.

Conversely, suppose P ′ ∈ E′(Q)[φ̂] ∩ φ(E(Q). Then, there exists a point P ∈ E(Q) such that
φ(P ) = P ′. But then we have

[2]P = φ̂ ◦ φ(P ) = φ̂(P ′) = O.

Taken together, we have argued that the following sequence is exact:

(7.3) 0→ E′(Q)[φ̂]/φ(E(Q)[2])→ E′(Q)/φ(E(Q))→ E(Q)/2E(Q)→ E(Q)/φ̂(E′(Q))→ 0.

Thus, to compute E(Q)/2E(Q), we compute both S(φ)(E/Q) and S(φ̂)(E′/Q), and then use the
sequence.

8. Computational Examples

8.1. Descent via a degree-2 isogeny. We will illustrate with two concrete examples how descent
via a degree-2 isogeny is used to calculate the Mordell-Weil group of an elliptic curve. Before we
proceed, we prove the following lemma that will come in handy in showing that certain homogeneous
spaces do not have a Qp-rational solution for some prime p (and hence don’t belong to S(φ)(E/Q)).
The lemma may be strengthened in different directions but it will suffice for our purposes.

Lemma 8.1. Let d ∈ Z be squarefree and consider the hyperelliptic curve

C : dw2 = d2 + adz2 + bz4,

for some a, b ∈ Z. Let p | d be a prime such that either
• ordp(b) = 0 or,
• ordp(b) 6= 0 is even and 4 ≤ ordp(b) ≤ ordp(a) + 2.

Then C(Qp) = ∅.

Proof. Let p be such a prime. For the sake of contradiction, let (z, w) be a Qp-rational solution
to C. Note that ordp(dw

2) is odd since d is squarefree while ordp(bz
4) is even in either case. We

consider the two cases:
• ordp(b) = 0. We claim that z ∈ Zp and thus w ∈ Zp (since d is squarefree). Suppose not, so
that we can rewrite C as

u

p2k−1
= p2v1 +

av2

p2l−1
+
v3

p4l
,

with l, k > 0 (we are ignoring the case k ≤ 0 here because it can be handled similarly) and
u, vi ∈ Z×p . Then either 2k−1 < 4l or 2k−1 > 4l. Take the first possibility, so that clearing
denominators and rearranging, we get

v3 = up4l−2k+1 − p2l+2v1 − p2l+1av2,

which is a clear contradiction since the right side has positive valuation. The other possibility
yields a similar contradiction. So, we must have z, w ∈ Zp and we can reduce C over Fp.
Looking at C mod p, we see that z ≡ 0 (mod d). Consequently, looking mod p2, we have
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w ≡ 0 (mod p). But then we obtain 0 ≡ d2 (mod p3), a contradiction since d was assumed
to be squarefree.
• ordp(b) 6= 0 is even and 4 ≤ ordp(b) ≤ ordp(a) + 2. By an argument very similar to the
previous case, we must have z, w ∈ Zp (the inequality ordp(b) − ordp(a) ≤ 2 is used here).
Then, looking mod p2, since ordp(b) ≥ 4 and ordp(a) ≥ 2, we conclude that w ≡ 0 (mod p).
But then reducing mod p3, we again get 0 ≡ d2 (mod p3).

Thus, in either case we see that C(Qp) = ∅. �

Example 8.2. Let us now compute the Mordell-Weil group of

E : y2 = x3 + 6x2 + x.

This elliptic curve has a degree-2 rational isogeny to

E′ : y2 = x3 − 12x2 + 32x.

We calculate the discriminant of E to be ∆ = 29. So, B(2) = {2} and Q(B(2), 2) = {±1,±2}. Note
that,

(0, 0) 7→ 62 − 4 · 1 = 32 ≡ 2 (mod Q×2).

We also know O 7→ 1 (mod Q×2). So, 1, 2 ∈ S(φ)(E/Q). We have to now analyze the homogeneous
space Cd corresponding to each remaining d ∈ Q(B(2), 2) given by

Cd : dw2 = d2 − 12dz2 + 32z4.

Let us first analyze d = −1. The curve is

C−1 : −w2 = 1 + 12z2 + 32z4.

Suppose (z, w) ∈ Q2 is a solution of C−1. Then, since ord2(−w2) is even while ord2(32z4) is odd,
by an argument very similar to the one in Lemma 8.1, we must have z, w ∈ Z2. However, we then
have

w2 ≡ −1 ≡ 3 (mod 4),

a contradiction. Therefore, −1 6∈ S(φ)(E/Q). Since S(φ)(E/Q) is a subgroup of Q(B(2), 2), and we
know 2 ∈ S(φ)(E/Q), we also deduce that −2 6∈ S(φ)(E/Q).

Thus, S(φ)(E/Q) = {1, 2} and since we have shown each locally trivial homogeneous space also
has a rational solution, we have X(E/Q)[2] = 0. So, we conclude from Lemma 6.7 that

E′(Q)/φ(E(Q)) ' S(φ)(E/Q) ' Z/2Z.

Next, we have to repeat the same computation with the dual isogeny φ̂ : E′ → E to calculate
E(Q)/φ̂(E′(Q)). It is easily checked that the discriminant of E′ will involve the same primes as
that of E and so Q(B(2), 2) remains the same. We have O 7→ 1 (mod Q×2) and

(0, 0) 7→ 16 ≡ 1 (mod Q×2).

So, here we don’t get one point for free in S(φ)(E′/Q). For each d ∈ Q(B(2), 2), the corresponding
homogeneous space is

C ′d : dw2 = d2 + 24dz2 + 16z4.

Observe that we can then use Lemma 8.1 to rule out d = ±2. It remains to check d = −1, which is
the curve

C ′−1 : −w2 = 1− 24z2 + 16z4.

First, let us somewhat simplify the form of this curve by substituting Z = 2z to get

−w2 = 1− 6Z2 + Z4.
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Then, we notice the rational solution (Z,w) = (1, 2) 7→ (z, w) = (1/2, 2) and so −1 ∈ S(φ̂)(E′/Q).
Thus, we have computed S(φ̂)(E′/Q) = {±1}, and so

E(Q)/φ̂(E′(Q)) ' S(φ̂)(E′/Q) ' Z/2Z.

Since E′(Q)[φ̂] = {O, (0, 0)} and φ(E(Q)[2]) = {O}, we have

E′(Q)[φ̂]/φ(E(Q)[2]) ' Z/2Z.
Then, the exact sequence 7.3 reads

0→ Z/2Z→ Z/2Z→ E(Q)/2E(Q)→ Z/2Z→ 0,

and so E(Q)/2E(Q) ' Z/2Z. The Mordell-Weil Theorem then implies that E(Q) is either Z or
Z/2mZ, but since E does have a nontrivial point of torsion (0, 0), we rule out the first possibility. So,
E has rank 0 and we need to determine the torsion Etors(Q), which we could do using Proposition
2.2, but in this case the Nagell-Lutz Theorem is quicker (because we already know all rational points
must be torsion). A nonzero point (x, y) 6= (0, 0) ∈ Etors(Q) has integer coordinates and further
y2 | ∆ = 29, i.e., y2 ∈ {1, 22, 24, 26, 28}. We have

y2 = x(x2 + 6x+ 1),

and so we see y2 = 1 is not possible. For y2 = 22k with k > 0, we must have x = ±1 (otherwise
x2 + 6x+ 1 is odd and different from ±1). From this, we thus get y2 = 4 corresponding to x = 1 as
the only possibility. Therefore, Etors(Q) = {O, (0, 0), (−1,±2)} and Mordell-Weil group of E has
rank 0 and is isomorphic to Z/4Z. Indeed, we can confirm this result is correct by searching the
LMFDB database [9] using the j-invariant 287496 of E. Then comparing Weierstrass forms, the
elliptic curve in the LMFDB that is isomorphic over Q to our curve E is 32.a2, where the reader
can find plenty more fascinating information about it. (Note that their Weierstrass form differs ours
and can be obtained by the transformation x 7→ x− 2.)

But why stop there? Through this computation, we have also determined

E′(Q)/2E′(Q) ' Z/2Z,
and then calculating the torsion, we get E′(Q) ' Z/2Z×Z/2Z. In fact, E′ is rather special because
it has j-invariant 1728 and can be represented by the Weierstrass form

E′ : y2 = x3 − x,
corresponding to 32.a3 in the LMFDB.

Example 8.3. Let us next look at the slightly more interesting elliptic curve

E : y2 = x3 + 9x2 − x,
with

E′ : y2 = x3 − 18x2 + 85x,

and discriminant ∆ = 24 · 5 · 17. So, we have 16 possibilities in

Q(B(2), 2) = {±1,±2,±5,±17,±10,±34,±85,±170}.
Note that (0, 0) ∈ E′(Q) is mapped to 85 (mod Q×2). Corresponding to each remaining d ∈
Q(B(2), 2) is the homogeneous space

Cd : dw2 = d2 − 18dz2 + 85z4.

Then, we immediately know that ±2,±10,±34,±170 6∈ S(φ)(E/Q) using Lemma 8.1. Let us next
check d = 5,

C5 : 5w2 = 25− 90z2 + 85z4,
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in which we can cancel 5 to obtain

w2 = 5− 18z2 + 17z4.

By inspection, we see this has the rational solution (z, w) = (1, 2), and so 5 ∈ S(φ)(E/Q). By our
discussion in the preceding section (7.2), we also recover the rational point (5/12, 5 · 2/13) = (5, 10)
on E′.

Since 85 ∈ S(φ)(E/Q), we have 17 = 85/5 ∈ S(φ)(E/Q). So far we have {1, 5, 17, 85} ⊆
S(φ)(E/Q). Since S(φ)(E/Q) is a subgroup of Q(B(2), 2), S(φ)(E/Q) must be either contain or
be disjoint from {−1,−5,−17,−85}. We observe that if d < 0, then Cd has no solutions over R, so
like in the previous example, we should be praying that the elements of {−1,−5,−17,−85} are not
nontrivial in X. This is indeed the case! Consider

C−85 : −85w2 = 852 + 18 · 85z2 + 85z4,

which after cancelling 85 and completing the square becomes(
z2 + 9

2

)2

+
(w

2

)2
= −1.

Note that a Qp-rational solution for this equation implies one for

a2 + b2 = −1.

Suppose we have a solution (a, b) over Q2. Then for large enough k ∈ Z≥0, we can write this last
equation as

u2 + v2 = −22k,

with u, v ∈ Z2, where we can assume without loss of generality that ord2(v) = 0. Suppose k = 0.
Then, u2 + v2 ≡ 3 (mod 4), which is impossible. Alternatively, if k > 0, then u2 + v2 ≡ 0
(mod 4), implying that u, v ≡ 0 (mod 2), contradicting our assumption that ord2(v) = 0. Thus,
C−85(Q2) = ∅ and −85 6∈ S(φ̂)(E′/Q).

We have then calculated

E′(Q)/φ(E(Q)) ' S(φ)(E/Q) = {1, 5, 17, 85} ' Z/2Z× Z/2Z.

Let us now analyze

C ′d : dw2 = d2 + 36dz2 − 16z4.

But, by Lemma 8.1, we can rule out any d which has at least one prime divisor. Further, note that
(0, 0) maps to −16 ≡ −1 (mod Q×2). Thus,

E(Q)/φ̂(E′(Q)) ' S(φ̂)(E′/Q) = {±1} ' Z/2Z.

Therefore, the sequence 7.3 is

0→ Z/2Z→ (Z/2Z)2 → E(Q)/2E(Q)→ Z/2Z→ 0,

and so E(Q)/2E(Q) is either Z/4Z or Z/2Z × Z/2Z. But it is easy to see that the former is
not possible because elements of E(Q)/2E(Q) have order at most 2 (therefore, in general it is
(Z/2Z)n, n ∈ Z≥0). Finally, using the Nagell-Lutz Theorem we check that Etors(Q) ' Z/2Z, and
thus E(Q) ' Z×Z/2Z, meaning that E has rank 1. This elliptic curve E corresponds to 340.a1 in
the LMFDB. Similarly, E′(Q) ' Z× Z/2Z and E′ is 340.a2.
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8.2. Descent via a degree-3 isogeny. We now attempt to mimic the technique of descent by a
degree-2 isogeny with a degree-3 isogeny. Because Q does not contain µ3, the transition to a degree-
3 isogeny introduces complications. See Top [17] for a discussion on elliptic curves that admit a
rational 3-isogeny.

Example 8.4. Let us consider
E : y2 = x3 + 16.

This curve can be calculated to have rational torsion Etors(Q) ' Z/3Z corresponding to the points
{O, (0,±4)}. Thus, it does not have a rational point of order 2, and the degree-2 isogeny we have
been using does not exist for this curve. To begin trying to adapt the descent by 2-isogeny for this
curve, we need a degree-3 isogeny with kernel Etors(Q). Vèlu [18] has shown how to construct such
isogenies and the method is implemented in Sage as EllipticCurveIsogeny. Using Sage, we find
the following degree-3 rational isogeny φ : E → E′

φ : (x, y) 7→
(
(x3 + 64)/x2, y(x3 − 128)/x3

)
,

where E′ is the elliptic curve
E′ : y2 = x3 − 432.

Here E[φ] ' µ3 as groups. But the identification does not extend as G = GQ̄/Q-modules since µ3 is
not contained within Q, and so some care needs to be taken in how we identify cohomology. This
can be fixed in the following way. Let K = Q(ζ3), where ζ3 is a primitive third root of unity. Then,
we can identify E[φ] with µ3 as a GQ̄/K-module. By exactly the same argument as in Example 6.9,
we then have

H1(GQ̄/K , E[φ]) ' H1(GQ̄/K , µ3) ' K×/K×3,

and
H1(GQ̄/K , E[φ];S) ' K(B(φ), 3).

The cohomology group H1(GQ̄/K , E[φ]), however, does not fit well into our sequence 6.1, since we
are still interested in computing rational points rather than K-rational points on E. This is a good
example of the kind of situtation the restriction-inflation sequence 3.5 comes in handy. In particular,
since GQ̄/K is normal in G, the restriction-inflation sequence reads

0→ H1(G/GQ̄/K , H
0(GQ̄/K , E[φ]))→ H1(G,E[φ])→ H1(GQ̄/K , E[φ]).

As E[φ] ⊆ Q, we have H0(GQ̄/K , E[φ]) = E[φ]. We claim that H1(G/GQ̄/K , E[φ]) = 0. Indeed,
G/GQ̄/K is isomorphic to Gal(Q(ζ3)/Q) ' (Z/3Z)× ' Z/2Z. If 1 is the trivial automorphism, σ is
the nontrivial automorphism, and ξ ∈ H1(G/GQ̄/K , E[φ]), then

(0, 0) = ξ1 = ξσ·σ = ξσσ + ξσ = 2ξσ,

meaning that ξσ = (0, 0) since the other points of E[φ] have order 3. So, H0(GQ̄/K , E[φ]) is trivial
and H1(G,E[φ]) → H1(GQ̄/K , E[φ]) is injective. In fact, it is also surjective and the quickest way
to see this is appeal to the full restriction-inflation sequence, which tells us the term on the right of
H1(GQ̄/K , E[φ]) is H2(G/GQ̄/K , E[φ]). It can be checked that H2(G/GQ̄/K , E[φ]) = 0 too, but we
don’t do that here since we have not formally introduced H2 (but see [1]). Therefore, we have the
isomorphism

H1(G,E[φ]) ' H1(GQ̄/K , E[φ]),

that is essentially saying each 1-cocycle GQ̄/K → E[φ] can be extended uniquely to a 1-cocycle
G→ E[φ]. Thus, we have, similar to the 2-isogeny case, that

H1(G,E[φ];B(φ)) ' K(B(φ), 3).
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What is K(B(φ), 3)? We have ∆(E) = −212 · 33 and deg(φ) = 3. Over Q, the bad primes would
have been 2 and 3, but since we are now working in K = Q(ζ3), we have to work with the valuations
induced by the prime ideals of Z[ζ3], the ring of integers of K. So, we have to determine how 2 and
3 factor in Z[ζ3]. The minimal polynomial of ζ3 over Q is f(x) = x2 + x + 1. Therefore, by the
Dedekind-Kummer Theorem [11, Ch. 1, Prop. 8.3]

• f(x) is irreducible over Z/2Z and so 2 remains prime in Z[ζ3].
• f(x) ≡ (x− 1)2 (mod 3) and so 3 ramifies with

〈3〉 = 〈3, ζ3 − 1〉2 = 〈ζ3 − 1〉2,
since 3 = −(ζ3 − 1)(ζ3 + 2).

Since Z[ζ3]× = {±1,±ζ3,±ζ2
3} and Z[ζ3] is a UFD, a complete set of unique representatives for

K(B(φ), 3) is
{ζr3 · 2s · (ζ3 − 1)t : r, s, t ∈ {0, 1, 2}}.

It remains to consider the homogeneous space corresponding to each class {d} ∈ K(B(φ), 3). Each
{d} ∈ K(B(φ), 3) corresponds to the 1-cocycle

σ 7→


1 3

√
d
σ

= 3
√
d

(0, 4) 3
√
d
σ

= ζ3
3
√
d

(0,−4) 3
√
d
σ

= ζ2
3

3
√
d.

Then, for each d ∈ K(B(φ), 3), similar to how we re-derived Cd in Section 7, we find the following
homogeneous space for each d = a+ bζ3 ∈ K(B(φ), 3):

Cd : bw3 + 6(2a− b)w2z + 36bwz2 − 24(2a− b)z3 = 24.

Besides the fact that this is more complicated than the case of 2-isogenies, note the asymmetry in
a and b that arises from the fact that d = a + bζ3 has real part a − b/2 and complex part b

√
3/2.

Studying such spaces for each of the 27 classes in K(B(φ), 3) would obviously be quite painstaking.
The saving grace is the following fact: the elements of K(B(φ), 3) that end up being in S(φ)(E/Q)
must necessarily have norm (in the extension K/Q) that is a rational cube; we will take this result
for granted here but see [17, §4]. This observation drastically cuts down the values of d we have to
consider to {1, ζ3, ζ

2
3}. We know O ∈ E′(Q) maps to d = 1. We can also check ζ3, ζ

2
3 ∈ S(φ)(E/Q),

for example because the point (z, w) = (0, 1) is on both Cζ3 and Cζ23 . Thus,

E′(Q)/φ(E(Q)) ' S(φ)(E/Q) ' Z/3Z.
From the points on Cζ3 and Cζ23 , we also find the non-obvious points (12,±36) ∈ E′(Q).

We next repeat the computation with S(φ̂)(E′Q). Since ∆(E′) = −212 · 39, K(B(φ), 3) remains
the same (and we have to only check d = ζ3 and ζ2

3 ). The corresponding homogeneous spaces are

C ′d : bw3 + (2a− b)w2z + 27bwz2 + 3(2a− b)z3 = 24.

We again find that
E(Q)/φ̂(E′(Q)) ' S(φ̂)(E′/Q) ' Z/3Z.

Finally, using the sequence (7.3), we compute

E(Q)/3E(Q) ' Z/3Z ' E′(Q)/3E′(Q).

Checking torsion, we conclude that

E(Q) ' Z/3Z ' E′(Q).

Thus, E(Q) = {O, (0,±4)} and E′(Q) = {O, (12,±36)}. The elliptic curves E and E′ are 27.a4
and 27.a3 respectively in the LMFDB.
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The LMFDB entry 27.a3 tells us that E′ is a Weierstrass model for the Fermat cubic curve. We
end by using this fact to prove the following. It is fascinating that this proof ultimately still requires
a full understanding of arithmetic in Q(ζ3) and uses descent, albeit dressed up quite differently.

Theorem 8.5. The equation
X3 + Y 3 = Z3

has no nontrivial integer solutions.

Proof. Suppose we had an integer solution (X,Y, Z) with XY Z 6= 0. Then, we obtain a rational
solution different from O to

y2 = x3 − 432,

by letting (x, y) = (−12X/(Y − Z), 36(Y + Z)/(Y − Z)). By the previous example, we must then
have (Y + Z)/(Y − Z) = ±1, from which we obtain either Y = 0 or Z = 0, a contradiction. �
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