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1 Introduction

In this short article, we wish to introduce the Discrete Fourier Transform (DFT) and explore digital

filtering as one of its archetypal applications. The DFT has a rich history, beautiful underlying

theory, and numerous applications. As a result, there is no canonical way to motivate the DFT. For

instance, the DFT may be viewed as a discrete approximation to the Fourier transform. Or it may

be seen as an approximation to coefficients in a Fourier series. We will motivate the DFT through

one of its most basic applications: modelling a discrete set of periodic data. Our hope is to convey

the simplicity of the DFT while illustrating how it can be utilised for sophisticated applications

through the example of digital filtering.

The DFT depends critically upon nice properties of the Nth roots of unity. So, let us begin with

a review of these properties.

1.1 The Nth Roots of Unity

Let N ≥ 1 be a natural number. Recall that, if we let ωN = e2πi/N = cos(2πN ) + i sin(2πN ), then

the N complex numbers in UN = {ω0
N , ω

1
N , ω

2
N , . . . , ω

N−1
N } are all distinct roots of the equation

zN − 1 = 0. These numbers are known as the N th roots of unity. The Nth roots of unity have a

special underlying structure: they form a multiplicative group of order N .

Lemma 1. Let N ∈ N+. Then the N th roots of unity, UN = {ω0
N , ω

1
N , . . . , ω

N−1
N }, form a multi-

plicative group of order N .

Proof. First, we see that ω0
N = 1 serves as the multiplicative identity. Also, UN inherits associativity

of multiplication from C because UN ⊂ C. Next, to verify closure, take any two Nth roots ωmN , ω
n
N ∈

UN . By the Division algorithm, we can find nonnegative integers q and r ≤ N − 1 such that

m+ n = Nq + r.
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Therefore,

ωmN · ωnN = ωm+n
N

= ωNq+rN

= (ωNN )q · ωrN

= ωrN [ωNN = 1].

Since r was chosen to be less than N , we see that ωmN · ωnN = ωrN ∈ UN , and so UN is closed under

multiplication. Finally, to verify existence of inverses, take any element ωkN ∈ UN . Then, note that

ωkN · ωN−kN = ωNN = 1.

As 0 ≤ k ≤ N − 1, we have 1 ≤ N − k ≤ N . Therefore, since ωNN = 1 = ω0
N ∈ UN , we see that

ωN−kN ∈ UN , showing that UN is closed under inverses. This verifies the group structure of UN .

The group structure distinguishes the roots of unity from the remaining complex numbers since

it can be shown that the Nth roots of unity, for each N , are the only finite multiplicative groups

in C. Indeed, the group structure of UN may be viewed as a statement about its periodicity, and

already begins to indicate why the roots of unity are essential to the DFT.

Next, observe that since

zN − 1 = (z − 1)(zN−1 + zN−2 + · · ·+ z0),

and ωN 6= 1 is a root of zN − 1, we must have

ωN−1N + ωN−2N + · · ·+ ω0
N = 0.

Thus, the sum of the Nth roots of unity is zero. What about the sum of their squares? Cubes? It

is a beautiful fact that they too are all zero (assuming N > 3), as we now show. We note that our

proof is not the most efficient but it illustrates smaller properties along the way that will be useful

when we study the DFT. The proof also gives a flavour of how the roots of unity play an important
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role in number theory and algebra, indicative of the utility of Fourier transforms in those areas.

Theorem 2. Let N ∈ N+. Then, for 0 ≤ j ≤ N − 1,

N−1∑
k=0

ωkjN =


0 j 6= 0

N j = 0

.

Proof. Observe that the result trivially holds for j = 0, and so we will be concerned with 1 ≤ j ≤

N − 1. We will proceed by induction on N . Note that the base case for N = 1 also holds. So,

suppose the result holds for all positive integers less than some N ∈ N≥2.

First, suppose first that 1 ≤ j ≤ N −1 is such that ωmjN 6= ωnjN for any 0 ≤ m < n ≤ N −1. This

is equivalent to saying the function fj : UN → UN defined by fj(a) = aj is injective (fj in indeed a

function into Un because Un is closed under multiplication). Since the set UN is finite, fj must be

a bijection − it permutes UN . Therefore, in this case

N−1∑
k=0

ωkjN =
N−1∑
k=0

fj(ω
k
N ) =

N−1∑
k=0

ωkN = 0.

So, we need to check that the result holds when 1 ≤ j ≤ N−1 is such that fj is not injective, i.e.,

when there exist 0 ≤ m < n ≤ N − 1 such that ωmjN = ωnjN , or ω(n−m)j
N = 1. By the well-ordering

principle, we choose m,n such that D = n−m is positive and minimal among all pairs (m,n) such

that fj(m) = fj(n). Thus, our choice ensures that D is the smallest integer in {1, 2, . . . , N − 1}

such that ωDjN = 1. In other words, D is the order of the element ωjN in the group UN of order N

(Lemma (1)). By Lagrange’s theorem1, we must have that D | N . Fix Q ∈ N such that N = DQ.

Then, using the Division algorithm, we get

N−1∑
k=0

ωkjN =

Q−1∑
q=0

D−1∑
r=0

ω
(Dq+r)j
N [Reindexing sum using k = Dq + r]

=

Q−1∑
q=0

D−1∑
r=0

ωrjN [Since ωDjN = 1]

1Recall Lagrange’s theorem states that in a finite group, the order of a subgroup must divide the order of the
group. Considering the cyclic subgroup generated by a certain element, we conclude that the order of each element
must divide the order of the group.
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= Q
D−1∑
r=0

ωrjN . (1)

However, the relation ωDjN = 1 can also be viewed as saying that multiplying ωN Dj times yields

1. Since N is the order of ωN , we must have N | Dj. So, fix L ∈ N+ such that NL = Dj; observe

that since Dj < DN , we must have L < D. Substituting j = NL/D into (1), we obtain

N−1∑
k=0

ωkjN = Q
D−1∑
r=0

ω
rNL/D
N

= Q

D−1∑
r=0

ωrLD ,

where in the last step we used the observation that ωN/DN = (e2πi/N )N/D = e2πi/D = ωD. Since

1 ≤ L ≤ D − 1, by the inductive hypothesis, we conclude that
∑D−1

r=0 ω
rL
D = 0, and thus the result

follows.

Having gained familiarity with the Nth roots of unity, we now move to understanding the DFT.

2 Modelling Data using Trigonometric Polynomials2

Suppose we want to model a set of periodic data S = {(xk, yk)}0≤k≤N−1 where the N points xk are

evenly spaced in an interval [a, b]. So, if L = b − a, then xk = k ·∆x where ∆x = L
N . Such a set

of data might be obtained, for instance, by measuring a certain quantity at uniform time intervals.

Now, we have at least two basic ways to model the data S: fitting it to a least squares model or

interpolating it. We will first try the least squares method, introduce DFT along the way, and then

turn to interpolation to reveal a beautiful property of the DFT. Of course, we have yet to choose a

model to which to fit S. Let us try fitting it to the trigonometric polynomial model

T (x) =
N−1∑
k=0

αke
2πik
L

x,

2Our treatment of DFT is inspired by Problems 26 & 28 in [1, Ch. 2].
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for some unknowns αk ∈ C, k = 0, . . . , N − 1. In the least squares method, we seek to minimize the

sum of squared errors

E =

N−1∑
k=0

|yk − T (xk)|2 .

Note that E is a function of the coefficients α0, . . . , αN−1, and so for E to be minimized, the partial

derivative of E with respect to each αk needs to be zero

∂E(α0, . . . , αN−1)

∂αk
= 0, for k = 0, . . . , N − 1.

Since |yk − T (xk)|2 = (yk − T (xk))(yk − T (xk)), for each k = 0, . . . , N − 1, we obtain

∂E(α0, . . . , αN−1)

∂αk
=

N−1∑
j=0

(
−∂T (xj)

∂αk
(yj − T (xj))− (yj − T (xj))

∂T (xj)

∂αk

)

=
N−1∑
j=0

(
−e

2πik
L

xj (yj − T (xj))− 0
)
, (2)

where we have applied ∂T (xj)
∂αk

= 0 since ∂αk
∂αk

= 0. Using that xj
L = j

N and setting (2) equal to zero,

we obtain

0 =

N−1∑
j=0

e
2πik
N

j(yj − T (xj))

=
N−1∑
j=0

e
2πik
N

j(yj − T (xj))

=
N−1∑
j=0

e−
2πik
N

j(yj − T (xj)),

where we used that eiθ = cos θ + i sin θ = cos θ − i sin θ = cos(−θ) + i sin(−θ) = e−iθ.

So we conclude that
N−1∑
j=0

e−
2πik
N

j(yj − T (xj)) = 0,

for k = 0, . . . , N − 1.
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Substituting ωN = e
2πi
N and T (xj) =

∑N−1
l=0 αlω

lj
N , we get

N−1∑
j=0

ω−kjN yj =

N−1∑
j=0

ω−kjN

N−1∑
l=0

αlω
lj
N

=
N−1∑
l=0

αl

N−1∑
j=0

ω
j(l−k)
N [Rearranging sums]

= αk ·N,

with the pleasant simplification in the last step being permitted by Theorem 2: the inner sum is

nonzero (and equal to N) only when l = k. All in all, we obtain

αk =
1

N

N−1∑
j=0

ω−kjN yj , for k = 0, . . . , N − 1. (3)

Thus, this relation gives a possible set of coefficients αk that might minimize the least squares error

E. In fact, given a sequence of points y0, . . . , yN−1, (3) also exactly describes how to obtain its

DFT!

Definition 3 (Discrete Fourier Transform). The Discrete Fourier Transform (DFT) of a sequence

y = {y0, . . . , yN−1} ⊂ C is the sequence Y = {Y0, . . . , YN−1} ⊂ C defined by

Yk =
1

N

N−1∑
j=0

ω−kjN yj .

We denote the DFT of y by D(y) = Y .

Going back to our least squares model, we have to still check that the coefficients αk given by

(3) indeed minimize E. Let us momentarily put this on hold and attempt to interpolate the data

S = {(xk, yk)} with the trigonometric polynomial model T (x). This amounts to finding coefficients

α̃0, α̃1, . . . , α̃N−1 ∈ C such that

yk = T (xk) =
N−1∑
j=0

α̃jω
jk
N ,

for each k = 0, . . . , N − 1.
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In other words,



ω0
N ω0

N ω0
N . . . ω0

N

ω0
N ω1

N ω2
N . . . ω

(N−1)
N

ω0
N ω2

N ω4
N . . . ω

2(N−1)
N

...
...

...
. . .

...

ω0
N ωN−1N ω

2(N−1)
N . . . ω

(N−1)2
N


︸ ︷︷ ︸

T



α̃0

α̃1

α̃2

...

α̃N−1


=



y0

y1

y2
...

yN−1


. (4)

Thus, the coefficients α̃k will exist if and only if the matrix T is invertible. Further, if the coefficients

α̃k do exist, then they will also automatically minimize the error E (namely, make it zero). Now,

note that (3) can also be expressed in matrix form as



α0

α1

α2

...

αN−1


=

1

N



ω0
N ω0

N ω0
N . . . ω0

N

ω0
N ω−1N ω−2N . . . ω

−(N−1)
N

ω0
N ω−2N ω−4N . . . ω

−2(N−1)
N

...
...

...
. . .

...

ω0
N ω−N−1N ω

−2(N−1)
N . . . ω

−(N−1)2
N


︸ ︷︷ ︸

D



y0

y1

y2
...

yN−1


. (5)

Engaging in some wishful thinking, assume the coefficients αk given by (5) do minimize E (we have

not verified this). So, if the interpolating coefficients α̃k exist, they must be given by (5). Notice

that this speculation is true if and only if T−1 = D, which we now verify.

Lemma 4. Let T and D be defined as above. Then T−1 = D.

Proof. We check that (TD)m,n = δm,n for 0 ≤ m,n ≤ N − 1.3 First, suppose m = n. Then,

(TD)m,m =
N−1∑
k=0

ωmkN ·
ω−mkN

N
=

1

N

N−1∑
k=0

ω0
N = 1.

3As usual, δ is the Kronecker delta: δm,n = 1 if m = n and 0 otherwise.
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For m 6= n, we get

(TD)m,n =
1

N

N−1∑
k=0

ωmkN · ω−nkN =
1

N

N−1∑
k=0

ω
k(m−n)
N = 0,

by an application of our handy Theorem 2. Thus, T−1 = D.

Therefore, the interpolation coefficients α̃k are indeed given by (5), and the points {(xn, yn)}

can be interpolated using T (x). This is one of the most basic applications of the DFT: we can

find the interpolating coefficients α̃k for the trigonometric polynomial T (x) through a set of evenly-

spaced points {(xn, yn)} by simply applying the DFT operator D to the sequence {y0, . . . , yN−1}.

Moreover, Lemma 4 implies that D has an inverse T−1, which can be applied to the coefficients

{α̃0, . . . , α̃N−1} to recover the data yn.

xn yn k Yk = D(y)k
0 9.96518 0 5.28565 + 0i
1 6.91185 1 1.49404− 0.03851i
2 4.53458 2 0.48084− 0.00997i
3 3.50964 3 0.30528 + 0.00721i
4 2.76787 4 0.11917 + 0i
5 3.46101 5 0.30528− 0.00721i
6 4.35168 6 0.48084 + 0.00997i
7 6.78341 7 1.49404 + 0.03851i

Table 1: An evenly spaced sequence in [0,8] along with its DFT

Figure 1: An 8-point signal along with its (real) trigonometric interpolation

To concretely illustrate the DFT, we have computed in Table 1 the DFT of an 8-point sequence

sampled at evenly spaced points in the interval [0, 8]. We have plotted the points (xk, yk) along
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(a) Real part of DFT (b) Imaginary part of DFT

Figure 2: The DFT of an 8-point sequence

with the real part of its trigonometric polynomial interpolation in Figure 1, which captures the

periodic aspect of the data. We have also plotted the real and imaginary parts of the DFT in

Figure 2, which shows some striking aspects of the DFT. Observe that the real part of the DFT

is even: for 1 ≤ k ≤ 7, Re(Yk) = Re(Y8−k). Similarly, the imaginary part is odd: for 1 ≤ k ≤ 7,

Im(Yk) = − Im(Y8−k). These are both general properties of the DFT of any real sequence y, as can

be readily checked by using the fact that ω−(N−k)jN = ωkjN = ω−kjN in Definition 3. Next, notice the

relative size of the real parts: the real parts of Y0 and Y1 seem to dominate those of Y2, Y3, . . . , Y6.

A similar pattern holds for the imaginary parts. What might we infer from this observation? We

must keep in mind the basic interpretation of the DFT coefficients. The coefficient Yk represents

the weight of the complex exponential e2πikn/N in the decomposition of yn as

yn = T (xn) =
N−1∑
k=0

Yke
2πikn
N .

In other words, since e2πikn/N = cos(2π k
N n) + i sin(2π k

N n), Yk can be seen as the contribution of

the frequency fk = k
N to yn. Thus, we can interpret from the small values of Y2, . . . , Y6, that the

corresponding higher frequencies have less contribution to the periodic data. Now, suppose we had

obtained this data by measuring a certain periodic system. What if we suspected that the small

contribution of higher frequencies in the data did not reflect the true nature of the system but was

rather an error introduced by imperfections in the measurement process? If this is the case, how

might we rid the data of these spurious high frequencies? The DFT provides us with a simple way:
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we could set the components of the DFT that we think must be zero (in this case, Y2, . . . , Y6) and

then apply the inverse DFT to recover a “cleaned” version of the data! This is the underlying idea

of digital filtering, which we now turn to explore.

3 Digital Filtering

Since the canonical application of digital filtering is to filter sound, it might be useful to think of

the sequence y = {yk}0≤k≤N−1 as N − 1 amplitudes of a continuous piece of sound (such as music)

sampled at evenly-spaced intervals of time. It will also be convenient to extend y into an infinite

periodic sequence. In other words, let us assume that we are measuring the amplitudes of a periodic

piece of music such that yn = yn mod N for any integer n. So, for example, yN+1 = y1, y−1 = yN−1,

and y100N = y0.

A filter is any function g we apply to y to obtain a new sequence of amplitudes y′ = {y′k}0≤k≤N−1.

Usually, as the name suggests, the filter g modifies y. The modification, which is determined by

the choice of the filter, might represent noise reduction (as in our example above), the enhancement

of certain frequencies, or any of the variety of subtle alterations, for instance, a musician might

require.

For a simple example of a filter, consider the function g which acts on a sequence y as

y′n = g(yn) =
1

2
yn−1 +

1

2
yn, for each n ∈ Z. (6)

So, this filter assigns the average of yn−1 and yn to y′n. For example, using this filter on y from

Table 1, we obtain the modified sequence in Table 2. Compare the signals y and y′ plotted in Figure

3 − arguably, the filtered signal seems to be slightly smoother. Also, compare the real part of their

DFTs: the contribution of higher frequencies has diminished, with Y ′4 being zero. Intuitively, by

averaging adjacent amplitudes, we have amplified the dominant frequencies while reducing the effect

of aberrant ones. Of course, the imaginary parts of higher frequencies have increased, but we can

only expect so much from such a simple filter!

A powerful way to represent the action of many filters is provided by the operation of convolution.
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yn Yk = D(y)k y′n Y ′k = D(y′)k
9.96518 5.28565 + 0i 8.37430 5.28565 + 0i
6.91185 1.49404− 0.03851i 8.43852 1.26163− 0.56110i
4.53458 0.48084− 0.00997i 5.72322 0.23544− 0.24541i
3.50964 0.30528 + 0.00721i 4.02211 0.04726− 0.10688i
2.76787 0.11917 + 0i 3.13876 0
3.46101 0.30528− 0.00721i 3.11445 0.04726 + 0.10688i
4.35168 0.48084 + 0.00997i 3.90635 0.23544 + 0.24541i
6.78341 1.49404 + 0.03851i 5.56755 1.26163 + 0.56110i

Table 2: Filtered sequence along with its DFT

(a) Original signal (b) Filtered signal

Figure 3: Illustrating the action of the filter in (6)

Definition 5. (Discrete Convolution) Let N ∈ N and let y = {yk}k∈Z and g = {gk}k∈Z be two

infinite complex sequences with period N . Then the convolution of y and g produces the infinite

sequence y′ = {y′k}k∈Z defined by

y′n =

N−1∑
k=0

ykgn−k, for each k ∈ Z.

We denote the convolution of y and g by y ∗ g.

How do we represent the action of the filter in (6) as a convolution? We claim that if we define

g to be the infinite 8-periodic sequence given by letting

{gk}0≤k<8 = {1

2
,
1

2
, 0, 0, 0, 0, 0, 0},
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then y′ = y ∗ g will give us the same sequence as in (6). For example,

y′0 =

7∑
k=0

ykg−k =

7∑
k=0

ykg8−k =

7∑
k=0

y8−kgk = y8 ·
1

2
+ y7 ·

1

2
= y0 ·

1

2
+ y−1 ·

1

2
,

which matches (6). The reader is encouraged to check why this holds for other n.

Let us again consider Table 2. While the real parts of the higher frequencies decreased, we had

wanted to completely rid our data of the frequencies corresponding to k = 2, 3, and 4, which would

automatically also eliminate those corresponding to k = 5 and 6 by the evenness and oddness of

the real and imaginary parts respectively. Earlier, we had suggested the seemingly simple-minded

approach of deleting these unwanted entries from the DFT of y and then inverting the resulting

DFT to obtain a clean version of the data. It is natural to wonder if there actually exists a filter

that achieves this effect. More generally, is modifying the DFT of a sequence as we like to obtain

a modified sequence a legitimate act of filtering? Put differently, can we always find a filter that

achieves a desired effect on the frequencies of its input? We are thus lacking an understanding of

how filtering a signal affects its DFT. The following theorem fills in this gap and shows the elegance

of convolutions.

Theorem 6 (Discrete Convolution theorem). Let N ∈ N+ and let y = {yk}k∈Z and g = {gk}k∈Z

be two infinite complex sequences with period N . Let Y = D(y) and G = D(g). Then

D(y ∗ g) = NY G,

where, as usual, Y G denotes the pointwise product of the sequences Y and G.

Proof. Let y′ = y ∗ g. The main strategy is to take advantage of the fact that yk = D−1(Y )k (we

know D−1 exists by Lemma 4) and similarly for g. We have for each 0 ≤ n ≤ N − 1,

y′n =

N−1∑
k=0

ykgn−k

=
N−1∑
k=0

D−1(Y )kD−1(G)n−k
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=

N−1∑
k=0

(
N−1∑
l=0

ωklNYl

)
·

N−1∑
j=0

ω
(n−k)j
N Gj

 [Lemma 4]

=

N−1∑
k=0

N−1∑
l=0

N−1∑
j=0

(
ωkl+nj−kjN YlGj

)

=
N−1∑
j=0

ωnjN Gj

(
N−1∑
l=0

Yl ·
N−1∑
k=0

ω
k(l−j)
N

)
[Switching first and last sums]

=
N−1∑
j=0

ωnjN Gj(Yj ·N) [By Theorem 2]

= D−1(NY G)n.

Thus, y′ = D−1(NY G), and so applying D, we obtain D(y′) = NY G.

Thus, the DFT of a filtered sequence is equal to the pointwise product of the DFTs of the original

sequence and the filter (with a scaling factor of N). We could not expect this relationship to be any

simpler! To illustrate the immense utility of Theorem 6, we use it to derive a filter that eliminates

frequencies in a signal beyond a certain level. Such a filter is known as a low-pass filter.

Specifically, with the same notation as above, we require a filter g that satisfies

D(y ∗ g)k =


Yk 0 ≤ k ≤ kc or N − kc ≤ k ≤ N − 1

0 kc < k < N − kc
.

The parameter kc is known as the cutoff frequency index and specifies that g must filter out the

frequencies represented by kc < k < N − kc. In our example, we want to remove frequencies

represented by 1 < kc < 7 and so kc = 1. By Theorem 6, we must then have

Gk =


1
N 0 ≤ k ≤ kc or N − kc ≤ k ≤ N − 1

0 kc < k < N − kc
.

Therefore, since g = D−1(G), we obtain

gn =

N−1∑
k=0

ωnkN Gk
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=

kc∑
k=0

ωnkN ·
1

N
+

N−kc−1∑
k=kc+1

ωnkN · 0 +
N−1∑

k=N−kc

ωnkN ·
1

N

=
1

N

(
kc∑
k=0

ωnkN +

kc−1∑
k=0

ω
n(N−kc+k)
N

)

=
1

N

(
ωnkcN +

kc−1∑
k=0

ωnkN +

kc−1∑
k=0

ω−nkc+nkN

)
[ωnNN = 1]

=
1

N

(
ωnkcN + (1 + ω−nkcN )

kc−1∑
k=0

ωnkN

)

=
1

N

(
ωnkcN + (1 + ω−nkcN )

1− ωnkcN

1− ωnN

)
[Geometric series, assuming n 6= 0]

=
1

N
·
ω−nkcN − ωn(kc+1)

N

1− ωnN
. (7)

For n = 0, we directly obtain g0 = 2kc+1
N . Inspecting the formula (7) we have obtained for a low-pass

filter, we see that it would have been difficult to guess without Theorem 6. For our example, putting

kc = 1, we obtain

gn =
1

8
· ω
−n
8 − ω2n

8

1− ωn8
, for 1 ≤ n ≤ 7,

and g0 = 3/8. The result of applying this filter to the sequence of Table 1 yields the sequence in

Table 3.

yn Yk = D(y)k y′n Y ′k = D(y′)k
9.96518 5.28565 + 0i 8.27374 5.28565 + 0i
6.91185 1.49404− 0.03851i 7.45302 1.49404− 0.03851i
4.53458 0.48084− 0.00997i 5.36268 0
3.50964 0.30528 + 0.00721i 3.22723 0
2.76787 0.11917 + 0i 2.29757 0
3.46101 0.30528− 0.00721i 3.11830 0
4.35168 0.48084 + 0.00997i 5.20863 0
6.78341 1.49404 + 0.03851i 7.34409 1.49404 + 0.03851i

Table 3: Result of filtering with a low-pass filter

The power of Theorem 6 also in lies the fact that we could have applied the low-pass filter

without explicitly computing g and convolving it with y. Instead, having determined G, we could

have computed y ∗ g as D−1(NY G)! Indeed, in practice, filters are usually applied in this way. The

reason for this is that a DFT can be efficiently computed by a Fast Fourier Transform (FFT). The

FFT cleverly takes advantage of repetitious multiplications in a DFT to compute it in O(N logN)
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operations rather than O(N2) operations as is suggested by (5); for a nice introduction to FFT, the

book [1, Ch.12] is recommended. As a result, the convolution y∗g, whose definition indicates O(N2)

operations, can be computed as D−1(ND(y)D(g)), which requires only O(3N logN) operations.4

So, Theorem 6 has both theoretical and practical utility and is one of the reasons why DFT has

become fundamental to efficient signal processing.

Our exploration concludes here. We have barely scratched the surface of the DFT − both in

its theory and applications. We have seen just the simplest examples of filters and mentioned the

fascinating FFT only in passing. In the author’s (rather limited) experience, the DFT appears to

have surprising connections to various parts of mathematics, and the topic seems to offer something

for every kind of mathematical taste. We hope this article might inspire the reader to embark on

their own exploration of DFT; [1] would be an excellent starting point.
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