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1 Algebra

The purpose of this section is to explain the basic definitions and results of field theory and Galois
theory that are important for algebraic number theory. The algebraic structures we will mainly
encounter are groups and rings usually in the form of fields. We won’t require much theory about
groups and so we will concentrate on fields. Our rings will always have a multiplicative identity
and almost always be commutative.

1.1 Field Extensions

Definition 1.1 (Field) A field is a commutative ring whose nonzero elements form a group under
multiplication. In other words, we can divide by nonzero elements of the ring.

Recall that in Z we have a Fundamental Theorem of Arithmetic (FTA) that gurantees a unique
factorization of any integer into primes. In algebraic number theory, we want to recover this
theorem in more general rings. These rings will occur naturally as subrings of certain fields that
contain the field of rationals Q.

Definition 1.2 (Field extension) A field L is a field extension of a field K if K ⊆ L. More
generally, L is a field extension of K if there is a ring homomorphism K → L, called an
embedding of K in L. This relationship is denoted L/K.

Notice that for a field extension L/K, we can view L as a vector space over K − the axioms for
a vector space are directly implied by the field axioms. So we then have a notion of a basis for L
when viewed as a K-vector space and can therefore talk about a dimension of L.

Definition 1.3 (Degree) The degree of a field extension L/K is the dimension dimK L of L as
a K-vector space and is denoted [L : K].
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We will care only about finite field extensions L/K here, i.e., [L : K] < ∞. We now prove a
basic fact worth remembering about degrees of field extensions, to illustrate the ideas introduced
so far.

Lemma 1.4 Let L,K, F be fields. If L is a finite extension of K and K is a finite extension of
F , then L is a finite extension of F . Further, [K : F ] = [K : L][L : F ].

Proof. Let n = [L : K] and m = [K : F ]. Then there exists bases α1, α2, . . . , αn for L/K and
β1, β2, . . . , βm for K/F . The simplest idea works: we show the elements αiβj for 1 ≤ i ≤ n and
1 ≤ j ≤ m, form a basis for L/F . Fix an element k ∈ K. Then we can write

(1.1) k = a1α1 + a2α2 + · · ·+ anαn,

with ai ∈ K. Now, each ai ∈ K can be written as

(1.2) ai = bi1β1 + bi2β2 + · · ·+ bijβj,

with bij ∈ F . Putting (1.2) into (1.1) we see k is a linear combination of the elements αiβj . Next,
suppose

c11α1β1 + · · ·+ c1mα1βm + · · ·+ cn1αnβ1 + · · ·+ cnmαnβm = 0,

for some cij ∈ K. This can be read as

(c11β1 + · · ·+ c1mβm)α1 + · · ·+ (cn1β1 + · · ·+ cnmβm)αn = 0,

and since the αis are linearly independent, we must have

ci1β1 + · · ·+ cimβm = 0,

for each i = 1, . . . , n. But since the βis are linearly independent too, we must have ci,j = 0 for
j = 1, . . . ,m and each i = 1, . . . , n. �

Given a field extension L/K, we want an intermediate field extension of K that is contained
in L. One such way is to consider a suitable polynomial f(x) ∈ F [x] which cannot be factored
within K but can be in L; suppose α ∈ L \K is a root of f(x). Then we can enlarge K to create
a field K[α] which is the minimal field that contains K and α. More precisely, if we let M be
the collection of all subfields that contain both K and α, then

K[α] =
⋂
F∈M

F.

It’s easy to check that K[α] is indeed a subfield of L. A more constructive description of K[α]
is obtained by considering the ring homomorphism ϕ : K[x] → K[α] determined by sending
x 7→ α. We letK ′ be the isomorphic image ofK[x]/Ker(ϕ) inK[α]. It’s clear thatK ′ a subfield
of K[α] and since it contains both K and α, must be equal to K[α], i.e., K[x]/Ker(ϕ) ∼= K[α].
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Now since K[x]/Ker(ϕ) is a field, Ker(ϕ) must be a maximal ideal of K[x]. Recall that since
K[x] is a PID, it must be the case that Ker(ϕ) is generated by an irreducible polynomial, i.e.,
Ker(ϕ) = (f(x)) with f(x) irreducible. By the definition of kernel, we then have f(α) = 0,
and the same is true for any g(x) ∈ Ker(ϕ) = (f(x)). Since K is a field, we can choose f(x)
to be monic (i.e., its leading term has coefficient 1). We now have an explicit description of
K[α] ∼= K[x]/(f(x)) as being the set of remainder classes of K[x] under division by f(x). Thus
if f(x) = xd + ad−1x

d−1 + · · ·+ a0, then

K[α] = {kd−1αd−1 + kd−2α
d−2 + · · ·+ k0 | ki ∈ K}.

This description immediately shows that the d elements αd−1, αd−2, . . . , 1 form a basis for K[α]
over K and so [K[α] : K] = d. The monic irreducible polynomial f(x) with f(α) = 0 is called
the minimal polynomial of α and plays an important role in field theory.

Definition 1.5 (Integrality) Let A be a subring of a commutative ring B. Then an element
b ∈ B is integral over A if there exist n ∈ Z≥1 and ai ∈ A such that

bn + an−1b
n−1 + · · ·+ a0 = 0.

In other words there exists a monic p(x) ∈ A[x] such that p(b) = 0. The integral closure of A
in B is the set of elements in B that are integral over A. Further, A is integrally closed if the
integral closure of A in its field of fractions is again A.

We have this useful fact:

Proposition 1.6 Every Unique Factorization Domain (UFD) is integrally closed.

Proof. The proof is an emulation of the proof of the Rational Roots theorem. Let A be
a UFD with field of fractions K. Suppose α ∈ K is integral over A, so that there exists
f(x) = xn + an−1x

n−1 + · · · + a0 ∈ A[x] such that f(α) = 0. Let α = r/s with r, s ∈ A
and, using unique factorization, cancel any common irreducibles in their factorizations. So, we
have

rn + snan−1r
n−1 + · · ·+ sna0 = 0.

Since s | snan−1rn−1 + · · ·+ sna0, we must have s | rn. But since s and r share no irreducibles,
it must be the case that s is a unit in A, i.e., α ∈ A. �

A very close concept, essentially interchangeable with integrality in the case of fields, is the
following.

Definition 1.7 (Algebraic) LetA be a subring of a commutative ringB. Then an element α ∈ B
is called alegbraic over A if there exists (not necessarily monic) p(x) ∈ R[x] such that p(α) = 0.
If all elements of a field extension L/K are algebraic over K, then L is an algebraic extension
of K.
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We have a very useful connection between finite and algebraic extensions.

Proposition 1.8 If L/K is a finite field extension, then L/K is also algebraic.

Proof. Fix an element α ∈ L and let n = [L : K]. Then the n + 1 elements αn, αn−1, . . . , 1 are
linearly dependent and so there must exist ki ∈ K, not all zero, such that

knα
n + kn−1α

n−1 + · · ·+ k0 = 0.

Let m be the maximum i with nonzero ki. Then the monic polynomial

xm + k−1m km−1x
m−1 + · · ·+ k−1m k0

has α as a root. �

Recall that a finite integral domain is a field. The next result gives another instance of when
even an infinite integral domain can be shown to be a field. Indeed, its proof is in the same spirit
as the former result.

Lemma 1.9 Let A is an integral domain containing a field K. If A is algebraic over K, then A
is a field.

Proof. Suppose β ∈ A is nonzero. Since β is algebraic over K, the field K[β] is finite-
dimensional over K. Since K[β] is an integral domain, the mapping k 7→ kβ : K[β] → K[β]
is injective and by finite-dimensionality, is surjective too. Thus, there exists α ∈ K[β] such that
αβ = 1, implying β has a mutliplicative inverse. Hence A is a field. �

We can also think about doing linear algebra with a finite field extension L/K. Two maps that
arise from this viewpoint will be important in our study of algebraic number theory. Notice that
for each element l ∈ L, the map φl : L→ L given by φl(α) = lα is a K-linear mapping:

φl(k1α1 + k2α2) = l(k1α1 + k2α2) = k1(lα1) + k2(lα2) = k1φl(α1) + k2φl(α2),

for all k1, k2 ∈ K and α1, α2 ∈ L. So, we can talk about the trace and determinant of φl, given
by the trace and determinant of the matrix representation of φl with respect to any basis of L over
K. The trace Tr(l) and norm Nm(l) of an element l ∈ L/K is the trace and determinant of
φl respectively. Fear not, we won’t have to explicitly compute the norm by doing a determinant
because we have a simple but beautiful relationship with the minimal polynomial.

Proposition 1.10 Let L/K be a finite (separable) field extension of degree n. Suppose α ∈ L
has a minimal polynomial over K with roots α1, α2, . . . , αm (so that [K[α] : K] = m), then

Tr(α) = r
m∑
i=1

αi and Nm(α) =
( m∏
i=1

αi

)r
,

where r = n/m is the degree [L : K[α]].
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Proof. First suppose L = K[α] and let the minimal polynomial of α be xm+am−1xm−1+· · ·+a0.
We showed above that 1, α, . . . , αm−1 form a basis for L over K and with respect to this basis,

φα =


0 . . . 0 −a0
1 . . . 0 −a1
... . . . ...

...
0 . . . 0 −am−2
0 . . . 1 −am−1

 ,

and so by Vieta’s formula Tr(α) = −am−1 =
∑m

i=1 αi and Nm(α) = (−1)m−1(−a0) =
∏m

i=1 αi.
For the general case, suppose β1, β2, . . . , βr is a basis for L/K[α]. Then the elements {αiβj} for
0 ≤ i < m and 1 ≤ j ≤ r are a basis for L/K (cf. proof of Lemma 1.4) and so φα will just be
composed of r copies along the diagonal of our previous φα. �

The trace pairing
(α, β) 7→ Tr(αβ) : L× L→ K,

gives us a K-bilinear map (linear in each of its slots, when the other is fixed) to K. It can be
shown that for this mapping the discriminant defined as det(Tr(eiej)), for some basis e1, . . . , en
of L/K, is nonzero.1 This leads to a very nice consequence: suppose we have a general K-linear
mapping φ : L → K such that φ(ei) = ki, so that for any α =

∑n
i=1 aiei ∈ L, we have

φ(α) =
∑n

i=1 aiki. We can then find an element β =
∑n

i=1 biei ∈ L such that φ(α) = Tr(αβ)
for all α ∈ L, by solving the linear system

Tr(e1e1) Tr(e1e2) . . . Tr(e1en)
Tr(e2e1) Tr(e2e2) . . . Tr(e2en)

...
... . . . ...

Tr(ene1) Tr(ene2) . . . Tr(enen)



b1
b2
...
bn

 =


k1
k2
...
kn

 ,

because det(Tr(eiej)) 6= 0. In other words, we have a surjective map from L to the dual space2

L∗ given by β 7→ (x 7→ Tr(xβ)). In fact, this is an isomorphism because the kernel of this
mapping is just zero: for any β 6= 0, Tr(β−1β) = Tr(1) =

∑n
i=1 ei 6= 0. Now, L∗ has a very nice

basis: the functions fi : L → K such that fi(ej) = δij .3 By our isomorphism, we can therefore
find elements e′i ∈ L such that Tr(eie′j) = δij; because of this the elements e′i have to be linearly
independent and therefore form a basis too. Some refer to the e′i as a kind of “dual basis”.

1.2 Modules

Throughout this section we assume R is a commutative ring.
1Here we are still assuming L/K is a separable extension. Since all our work is eventaully over Q, we don’t have

to worry about this. You may consult ?? to see what this condition means and why we need this in general. Also,
we will not be proving that the discriminant is zero but encourage the interested reader to refer to ??.

2i.e., the vector space of all K-linear mappings L→ K.
3δij is the Kronecker delta, defined as 1 if i = j and 0 otherwise.
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Definition 1.11 (Module) An R-module is an additive abelian group M along with a mapping
(r,m) 7→ rm : R×M →M , so that the following hold for all r1, r2 ∈ R,m1,m2 ∈M :

• r1(m1 +m2) = r1m1 + r1m2,

• (r1 + r2)m1 = r1m+ r2m,

• (r1r2)m1 = r1(r2m1),

• 1m1 = m1.

We can also talk about R-submodules N of an R-module M , which implies N is an R-module
contained in M . Since modules have a group structure, a submodule N of a module M can
be viewed as an abelian subgroup of M , so that we can form the group quotient M/N . M/N
naturally inherits an R-module structure: r(m+N) = rm+N , for r ∈ R,m ∈ M , and is thus
called a quotient module.

The generalization of linear mappings between vector spaces is the following.

Definition 1.12 (Module homomorphism) Let M and N be R-modules. A map φ : M → N
is a module homomorphism if

• φ(x+ y) = φ(x) + φ(y) for all x, y ∈M ,

• φ(rx) = rφ(x) for all r ∈ R, x ∈ X .

It shouldn’t be too surprising that we can carry through all the isomorphism theorems from
ring theory because, after all, rings can be viewed as special cases of modules. In particular, for
a module homomorphism between R-modules φ :M → N , we have

M/Ker(φ) ∼= Im(φ),

where the kernel Ker(φ) = {m ∈M : φ(m) = 0} and the image Im(φ) = {φ(m) : m ∈M}.

Definition 1.13 (Finitely generated module) Let M be an R-module. M is finitely generated
if there exist elements x1, x2, . . . , xn ∈M,n ∈ Z≥1 such that any elementm ∈M can be written
as an R-linear combination of the xi’s:

m = r1x1 + r2x2, . . . , rnxn, ri ∈ R.

Lemma 1.14 Let S be a commutative ring integral over a subring R. Then for a finite set of
elements α1, α2, . . . , αn ∈ R, R[α1, α2, . . . , αn]

4 is finitely generated as an R-module.

Proof. First we show that R[α1] is finitely generated as an R-module. Since S is integral over R,
we can write

αm1 + rm−1α
m−1
1 + · · ·+ r0 = 0,

4Similar to K[α], R[α] denotes the ring {f(α) : f(x) ∈ R[x]}. We can keep repeating this construction:
K[α1, α2] = K[α1][α2], and so on.
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for some ri ∈ R,m ∈ Z≥1. Then for an element in R[α1], we can replace αm1 and higher powers
by an R-linear combination of αm−1, αm−2, . . . , α0, and therefore R[α1] is finitely generated as
an R-module.

Now, by the same reasoning R[α1, α2] is finitely generated as an R[α1]-module.
Suppose s0, . . . , sl−1 generate R[α1, α2] over R[α1]. Then the ml elements
r0s0, . . . , r0sl−1, . . . , rm−1s0, . . . , rm−1sl−1 generate R[α1, α2] over R (this is reminiscent
of the proof of Lemma 1.4). An induction then gives the required result. �

This next technical-looking lemma will be immensely useful at various points. Indeed, I sug-
gest skipping it for now and to return to it when it’s needed so as to place it in the correct context.

Lemma 1.15 Let R be a commutative ring. Let M be a nonzero finitely generated R-module
contained in a field, let a be an ideal of R, and let φ be a R-module homomorphism M → M
such that φ(M) ⊆ aM . Then φ satisifies an equation of the form

φn + a1φ
n−1 + · · ·+ an = 0, ai ∈ a.

Proof. Let M be generated by the elements x1, . . . , xn. By the hypothesis, for each i = 1, . . . , n,
φ(xi) =

∑n
j=1 aijxj for some aij ∈ a. So we have

φ− a11 −a12 . . . −a1n
−a21 φ− a22 . . . −a2n

...
... . . . ...

−an1 −a22 . . . φ− ann



x1
x2
...
xn

 = 0.

Denote the matrix on the left by T . Then multiplying on the left by AdjT , we we see that

det(T )


x1
x2
...
xn

 = 0.

Since M is nonzero, at least one of the xi’s are nonzero and since M lies within a field,
det(T ) = 0, which gives the required equation. �

Definition 1.16 (Noetherian module) A R-module M is Noetherian if all its submodules are
finitely generated over R.

A useful equivalent definition is that a R-module is Noetherian if any infinite increasing se-
quence of submodules N1 ⊆ N2 ⊆ N3 ⊆ . . . of M eventually becomes constant: Nk = Nk+1

for large enough k ∈ Z. It’s not too difficult to prove the equivalence of these two definitions.
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Noetherian modules are very much related to Noetherian rings. Indeed, a commutative ring R
is Noetherian if and only if it is a Noetherian module over itself because all the R-submodules
of R are precisely the ideals of R.

Lemma 1.17 LetM be a NoetherianR-module and letN be anR-submodule ofM . ThenM/N
is Noetherian.

Proof. Just as for rings, the following correspondence for modules can be verified: the R-
submodules of M/N are in bijection with the R-submodules of M that contain N . There-
fore, suppose M ′ is an R-submodule of M containing N . We have to show that M ′/N is
finitely generated as an R-module. Since M is Noetherian, M ′ is finitely generated and so let
α1, α2, . . . , αn ∈M ′ generate M ′ over R. Then α1 +N,α2 +N, . . . , αn+N ∈M ′/N generate
M ′/N over R. �

Proposition 1.18 Let R be Noetherian. Then every finitely generated R-module is Noetherian.

Proof. Let M be a finitely generated R-module with a generator set α1, α2, . . . , αn. Since R is
Noetherian, the direct product Rn viewed as an R-module is Noetherian. Then, let φ : Rn →M
be the module homomorphism given by (r1, r2, . . . , rn) 7→ r1α1+r2α2+ · · ·+rnαn. Since M is
finitely generated over R by the αi’s, φ is surjective on M . Therefore, we have an isomorphism
of R-modules, Rn/Ker(φ) ∼= M . By Lemma 1.17, Rn/Ker(φ) is Noetherian and thus M is
Noetherian. �

2 Algebraic Number Theory

The goal of this section is to give a rapid and reasonably complete introduction to the parts of
algebraic number theory relevant to its connections with graph theory.

2.1 Ring of Integers

Definition 2.1 (Number field) A number field is a finite field extension of Q.

Important examples of number fields are quadratic number fields which are of form Q[
√
d]

with d a squarefree integer; they all have degree 2 over Q. Another favorite family of number
fields is cyclotomic fields having the form Q[ζm] with ζm a complex primitive mth root of unity
(so Im(ζm) 6= 0, ζmm = 1, and ζkm 6= 1 for any 1 ≤ k < m); they have degree m over Q.

We hope to study a subring of a number field K that plays a similar role to that of the integers
Z in Q. Particularly, we want a subring that emulates the elegant arithmetic of Z.
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Definition 2.2 (Ring of integers) Let K be a number field. The ring of integers OK is the inte-
gral closure of Z in K.

There are many preliminary indications that this is the correct definition for OK . One is that K
is the field of fractions ofOK (we prove this shortly) just like Q is the field of fractions of Z. But
we have not yet verified that OK is indeed a ring. Let’s do that.

Proposition 2.3 Let K be a number field. Then OK is a ring.

Proof. We have to show that OK is closed under addition and multiplication. Fix α, β ∈ OK .
Then consider the Z-module M = Z[α, β] ⊆ K. Clearly, (α + β)M ⊆ M and (αβ)M ⊆ M .
So if we can show that M is a finitely generated Z-module, then in Lemma 1.15 we can take
R = a = Z and φ as the homomorphisms x 7→ (α + β)x and x 7→ (αβ)x to conclude closure.

Let f(x), g(x) ∈ Z[x] be the monic polynomials that are satisfied by α, β respectively. Let
m = deg f and n = deg g. Let M ′ be the Z-submodule of M that is generated by the finite
elements αiβj for 0 ≤ i < m and 0 ≤ j < n. We show that M = M ′ by showing αIβJ ∈ M ′

for all I, J ∈ Z≥0. We can write

xI = f(x)q1(x) + r1(x), x
J = g(x)q2(x) + r2(x),

with qi(x) ∈ Z[x] and deg r1 < m, deg r2 < n. Then

αI = r1(α), β
J = r2(β),

and so αIβJ = r1(α)r2(β) ∈M ′. �

Proposition 2.4 Let K be a number field. If α ∈ OK , then Tr(α),Nm(α) ∈ Z.

Proof. Let p(x) be the minimal polynomial of α over Q. By Proposition 1.10, it suffices to show
that p(x) has coefficients in Z. Since α ∈ OK , there exists a relation

αm + am−1α
m−1 + · · ·+ a0 = 0,

with ai ∈ Z. Looking back at our construction of K[α], its clear that if α′ is another root of p(x),
then K[α] ∼= K[α′] under the isomorphism σ determined by α 7→ α′. Therefore,

0 = σ(α)m + am−1σ(α)
m−1 + · · ·+ a0 = α′m + am−1α

′m−1 + · · ·+ a0,

showing that α′ is also integral over Z. Thus, since the integral closure of Z in any field is a
ring (the proof is virtually the same as above), the coefficients of p(x) are also integral over Z.
But they also belong to Q (by definition of minimal polynomial), and since Z is integrally closed
(Proposition 1.6), we conclude they belong to Z. �
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Proposition 2.5 Let K be a number field. Then K is the field of fractions of OK .

Proof. Fix an element k ∈ K. We want to show that there exists an element α ∈ OK such that
αk ∈ OK . Since K is a finite extension of Q, by Proposition 1.8, k is algebraic over Q and so
we have

kn + qn−1k
n−1 + · · ·+ q0 = 0,

for some qi ∈ Q. Let the common denominator of the rationals qi be α. Then multiplying
through by αn, we see

(αk)n + (qn−1α)(αk)
n−1 + · · ·+ αnq0 = 0,

and so αd is integral over Z, i.e., αd ∈ OK . �

In the proof above, because α is an integer, we actually have the stronger result that every
element of K can be written as β/n with β ∈ OK and n ∈ Z.

Since we are asserting that in the context of arithmetic OK is the correct generalization of Z,
a natural question is: does the Fundamental Theorem of Artihmetic (FTA) hold inOK? Or some
might prefer the rephrasing: is OK a UFD? In general it isn’t, which is the main reason why
Fermat’s Last theorem is so hard. The classic example for the failure of FTA is Q[

√
−5]: 6 can

be factored into irreducibles as both 2 · 3 and (1 −
√
−5)(1 +

√
−5). We can recover FTA by

considering the set of ideals in OK , and now we build up the theory required to prove this fact.

2.2 Dedekind domains

We come to the algebraic structure central to understandingOK , but first consider a local version
of it.

Definition 2.6 (Discrete valuation ring) A principal ideal domain (PID) is a discrete valuation
ring if it has a unique non-zero prime ideal. For a discrete valuation ringA, we denote its nonzero
prime ideal by m(A).

Suppose m(A) = (π). Then π has to be irreducible because otherwise we would have a prime
ideal that properly contained m. Further π is an associate of any other irreducible element in
A, and thus is effectively the only irreducible in A; it’s called the uniformizer of A. Since any
nonzero element a ∈ A can be written as a = πnu for some unit u ∈ A and n ∈ Z≥0, every
nonzero ideal of A is of the form (πn) = mn for a unique n. Therefore we already have a very
simple FTA for the ideals in DVRs, and so if we are able to show, loosely speaking, that OK
(more generally, a Dedekind domain) can be constructed by glueing together DVRs, then we can
lift the FTA to the ideals of OK .
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An example of a DVR is the subring Z(p) ⊆ Q for some prime p ∈ Z of elements r/s such
that p - s. The prime ideal m(Z(p)) is (p) and the units of Z(p) are the elements a/b with p - a
(and by definition p - b).

An analytic example is the following. Let X be a Riemann surface and p ∈ X . Then the ring
Hp of holomorphic functions in any neighborhood of p is a DVR. Hp is isomorphic to the subring
C{x} of convergent series in the ring C[[x]] of formal power series with coefficients in C. Its
unique prime ideal is the ideal of convergent power series

∑
anz

n such that a0 6= 0.

Proposition 2.7 An integral domain A is a discrete valuation ring if and only if

1. A is Noetherian,

2. A is integrally closed, and

3. A has exactly one nonzero prime ideal.

Proof. The forward direction is clear. Indeed, the first and third implications follow directly from
the definition of a DVR and the second implication follows from Proposition 1.6 because a DVR
is a PID and hence a UFD. So, suppose A is an integral domain satisfying the three conditions.
We have to show A is a PID.

Fix a nonzero nonunit c ∈ A and letM = A/(c). The key idea is to consider, for each nonzero
m ∈M , the annihilator Ann(m) of m defined as

Ann(m) = {a ∈ A | am = 0}.

Note that Ann(m) is a proper ideal of A. Since A is Noetherian we can choose an m ∈ M such
that Ann(m) is maximal among ideals of this form (i.e., there exists no nonzero m′ ∈ M such
that Ann(m) ( Ann(m′)). Let m = b+ (c) and p = Ann(b+ (c)).

We first show that p is prime by supposing it’s not. Then there exist x, y ∈ A such that xy ∈ p
but x 6∈ p, y 6∈ p. Then clearly p ⊆ Ann(yb + (c)) and x ∈ Ann(yb + (c)), contradicting the
maximality of p among annhilators.

Next, note b/c 6∈ A because otherwise b ∈ (c), contradicting b + (c) = m 6= 0. We argue
that p = (c/b). By construction pb ⊆ (c), so that p · b/c ⊆ A. If p · b/c ⊆ p, then by Lemma
1.15 (taking M = p, a = A, φ(m) = m · b/c) b/c is integral over A. Condition (b) then implies
b/c ∈ A, which we showed isn’t possible. So by condition (c), p · b/c = A, i.e., p = (c/b). Let
π = c/b.

Finally, let a be an ideal of A. In the field of fractions of A, consider the increasing sequence
of ideals

a ⊆ π−1a ⊆ π−2a ⊆ . . . .

If this sequence is contained in A, then because A is Noetherian, there exists r ∈ Z≥1 such that
π−r−1a = π−ra, which by Lemma 1.15 implies that π−1 ∈ A, a contradiction. Therefore, there
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exists an m ∈ Z such that π−ma ⊆ A but π−m−1a 6⊆ A. Then π−ma 6⊆ p and so π−ma = A, i.e.,
a = (πm). �

Definition 2.8 (Dedekind domain) An integral domain A is a Dedekind domain if

• A is Noetherian,

• A is integrally closed, and

• every nonzero prime ideal is maximal.

Note that Z is a Dedekind domain: being a PID, it is Noetherian and every nonzero prime ideal
is maximal; by Proposition 1.6 it is integrally closed.

A local ring is a ring with exactly one maximal ideal; DVRs are local rings. Proposition 2.7
tells us that a local Dedekind domain is a DVR. We will showOK is actually a Dedekind domain,
but only after proving a FTA for the ideals of a general Dedekind domain. The precise statment
is this:

Theorem 2.9 (FTA for Dedekind domains) Let A be a Dedekind domain. Every proper
nonzero ideal a of A can be written as

a = pe11 . . . pekk ,

with the pi distinct prime ideals and ri ∈ Z>0. Furthermore, this expression is unique.

We break the proof into a series of smaller lemmas, with the first goal being to show that the
localisation of a Dedekind domain at a prime ideal is a DVR.

A set S ⊆ A is multiplicative if 0 6∈ S, 1 ∈ S and S is closed under multiplication. The
multiplicative subset that will be important for us is S = A − p, for a nonzero prime ideal p of
A. The ring Ap = S−1A is called the localization of A at p.

Proposition 2.10 Let S be a multiplicative subset of a Dedekind domain A. Then S−1A is a
Dedekind domain.

Proof. We first establish a correspondence between the prime ideals of A and S−1A. We show
the map p 7→ pe := p · S−1A is a bijection between the prime ideals of A such that p ∩ S = ∅
and the prime ideals of S−1A.5 Suppose p is a prime ideal of A such that p∩S = ∅ and xy ∈ pe.
Then we can write xy = pa/s for some p ∈ p, a ∈ A, s ∈ S, and so sxy ∈ p. Since s 6∈ p, we
must then have xy ∈ p, and so either x or y is in p ⊆ pe. Therefore pe is indeed prime. A similar
argument shows that the mapping p 7→ pc := p ∩ A from the prime ideals of S−1A to the prime
ideals of A that don’t meet S is an inverse of p 7→ pe.

5The notation pe is commonly used to denote the extension of an ideal in a larger ring. The notation pc denotes the
contraction of an ideal in a smaller ring.

12



The condition that every nonzero prime ideal is maximal is equivalent to there being no larger
prime ideal between any prime ideal p and the entire ring S−1A. Indeed, since pc is a prime ideal
of A and there is no prime ideal between pc and A, there can be no prime ideal between p and
S−1A.

Next, suppose a is an ideal of S−1A. Then a = S−1 · ac and so a set of finite generators for ac

is also a finite set of generators for a. Therefore S−1A is Noetherian.

Finally, suppose α in the field of fractions of S−1A is integral over S−1A. Then we have

αn + αn−1bn−1 + · · ·+ b0 = 0,

for some bi ∈ S−1A. We can find si ∈ S such that sibi ∈ A, and so letting s = s0s1 . . . sn−1,

(sα)n + (sα)n−1sbn−1 + · · ·+ snb0 = 0.

This shows sα is integral over A and thus sα ∈ A. Hence α ∈ S−1A. �

Proposition 2.11 A Noetherian integral domain A is a Dedekind domain if and only if Ap is a
DVR for every nonzero prime ideal p of A.

Proof. Note thatAp is a local ring with maximal ideal pe and so the forward direction is proved in
Proposition 2.10 (since a local Dedekind domain is a DVR). For the reverse direction, we have to
show every prime ideal of A is maximal and A is integrally closed. First suppose p is a nonzero
prime ideal but is properly contained in a larger maximal ideal m. Then the extension pe of p in
Am is prime and is properly contained in the prime ideal me, contradicting that Am is a DVR.

Next suppose α is an element of the field of fractions of A that is integral over A. Since
A ⊆ Ap for each nonzero prime ideal p, α is integral over each Ap and since Ap is a DVR,
α ∈ Ap. Therefore, there exists an s ∈ A − p such that sα ∈ A. Let a be the set of elements
a ∈ A such that aα ∈ A. Notice a is an ideal of A and we just showed it contains an element of
A− p for every nonzero prime ideal. Thus a = A, and so 1 ∈ a. Hence x ∈ A. �

We now proceed to prove Theorem 2.9. We need three intuitively plausible lemmas from
commutative algebra.

Lemma 2.12 Let A be a Noetherian ring. Then every nonzero ideal of A contains a product of
nonzero prime ideals.

Proof. Suppose not. Since A is Noetherian, we can choose a maximal a among all ideals which
do not satisfy the claimed property. Since a cannot be a prime ideal, there exist x, y ∈ A such
that xy ∈ a but neither x ∈ a nor y ∈ a. Then consider the two ideals (x) + a and (y) + a.
Since a is properly contained in both (x) + a and (y) + a, by the maximal property of a, (x) + a
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and (y) + a contain a product of nonzero prime ideals. But then the product of these products is
contained in ((x) + a)((y) + a) ⊆ a, a contradiction. �

Recall that in a ring A, two ideals a and b are relatively prime if a+ b = A.

Lemma 2.13 Let A be a commutative ring with relatively prime ideals a and b. Then am and bn

are relatively prime for all m,n ∈ Z≥0.

Proof. First we show that a commutative ring R (with 1 6= 0) has at least one maximal ideal. Let
S be the set the of ideals in R not equal to R. Then ordering S by set inclusion, if (iα) is a chain
of ideals in S, then

⋃
α iα is an ideal of A too which is an upper bound of (iα). So, by Zorn’s

lemma6, S contains a maximal element. Using this result, we can deduce than any ideal a 6= A
is contained in a maximal ideal of A: A/a has a maximal ideal, which corresponds to maximal
ideal of A that contains a.

Returning to the lemma, suppose it’s false. Then am + bn is contained in a maximal ideal p.
If a ∈ a, then am ∈ am ⊆ p. Since p is prime, this means a ∈ p, i.e., a ⊆ p. Similarly, b ⊆ p.
Since a+ b = A, this contradicts that p is prime. �

Lemma 2.14 Let p be a maximal ideal of an integral domain A and let q = pe be the extension
of p in Ap, i.e, q = pAp. Then the mapping

a+ pm 7→ a+ qm : A/pm → Ap/q
m,

is an isomorphism for all m ∈ Z≥0.

Proof. The mapping is clearly a homomorphism. To show the mapping is injective, we show
its kernel is trivial, i.e., qm ∩ A = pm. Fix an element a ∈ qm ∩ A. Then a = p/s, where
p ∈ pm, s ∈ S = A− p, and so sa ∈ pm. Now p is the only maximal ideal containing pm (since
if pm ⊆ m then p ⊆ m). Therefore p/pm is the only maximal ideal of A/pm. Since s 6∈ p, it
follows that s is a unit in A/pm and so sa = 0 mod pm implies a = 0 mod pm, i.e., a ∈ pm.

To show the mapping is surjective, fix a/s ∈ Ap. Then, since s 6∈ p and p is maximal, (s) and
p are relatively prime. By Lemma 2.13, (s) and pm are also relatively prime. Therefore, there is
b ∈ A, p ∈ pm such that sb+ p = 1. This implies sb = 1 mod qm, i.e., b = s−1 mod qm, and so
ab = a/s mod qm. �

We are now ready to prove Theorem 2.9. We will make repeated use of Proposition 2.11 that
guarantees the localisation Ap at a nonzero prime ideal p of A is a DVR.

6Zorn’s lemma states that given a non-empty poset S, if every chain in S has an upper bound, then S has a maximal
element. A poset is a set with a relation ≤ which is transitive, reflexive and antisymmetric, i.e., if a ≤ b and
b ≤ a then a = b. A chain in a poset is a set in which any pair of elements can be compared via ≤.
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Proof. Let a be a nonzero ideal of a Dedekind domain A. By Lemma 2.12, a contains a product
of nonzero prime ideals

b = pr11 pr22 . . . p
rk
k ,

for distinct pi and ri ∈ Z>0. Then by the Chinese Remainder theorem7 and Lemma 2.14,

A/b ∼= A/pr11 × A/pr22 × · · · × A/p
rk
k
∼= Ap1/q

r1
1 × Ap2/q

r2
2 × · · · × Apk/q

rk ,

where qi is the extension of pi in Api , and by Proposition 2.11 it is the maximal ideal of the DVR
Ap. Now, recall that the ideal of a direct product of rings is a direct product of ideals in those
rings. Therefore, since a/b is an ideal of A/b,

a/b ∼= i1/q
r1
1 × i2/q

r2
2 × · · · × ik/q

rk ,

where ij is an ideal of Apj containing q
rj
j . Since Apj is a DVR, ij must be of the form q

sj
j for

sj ∈ Z≥0. Further, for ij to contain q
rj
j , we must have sj ≤ rj . Therefore,

a/b ∼= qs11 /q
r1
1 × qs22 /q

r2
2 × · · · × qskk /q

rk ,

for some nonnegative sj ≤ rj . However, note also that

ps11 ps22 . . . pskk /b
∼= qs11 /q

r1
1 × qs22 /q

r2
2 × · · · × qskk /q

rk .

(A way to see this is

ps11 ps22 . . . pskk /b
∼= ps11 /p

r1
1 × ps22 /p

r2
2 × · · · × pskk /p

rk
k ,

by the Chinese Remainder theorem and the fact that psii + p
rj
j = A for i 6= j. Then apply Lemma

2.14.) Thus we have an equality of ideals in A/b,

a/b = ps11 ps22 . . . pskk /b.

Since both a and ps11 ps22 . . . pskk contain b, and there is a 1 − 1 correspondence between ideals of
A/b and ideals of A containing b, we have

a = ps11 ps22 . . . pskk .

To show uniqueness of this expression, suppose

pt11 p
t2
2 . . . p

tk
k = a = ps11 ps22 . . . pskk ,

allowing some ti’s and sj’s to be zero if needed. Then because Ap1 is a DVR with the unique
maximal ideal q1, we have

aAp1 = pt11 p
t2
2 . . . p

tk
k Ap1 = pt11 p

t2
2 . . . p

tk−1

k−1Ap1 = · · · = pt11 Ap1 = qt11 .

7The CRT for a ring R states that if i1, i2, . . . , ik are pairwise relatively prime ideals, then
i1i2 . . . ik = i1 ∩ i2 ∩ · · · ∩ ik and so by the Isomorphism theorem R/(i1i2 . . . ik) ∼= R/i1 ×R/i2 × · · · ×R/ik.
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Similarly,

aAp1 = ps11 ps22 . . . pskk Ap1 = ps11 ps22 . . . p
sk−1

k−1 Ap1 = · · · = ps11 Ap1 = qs11 .

Thus, qt11 = qs11 and so t1 = s1 (recall, a DVR is a UFD). The same argument shows tj = sj for
all other j. �

In a PID, we have the useful fact that for two ideals a ⊆ b if and only if b | a. In the proof
of this, we actually don’t need the full force of unique factorization afforded in a UFD but only
unique factorization for the ideals and the fact that ideals are principal. In Dedekind domains,
ideals need not be principal, but we don’t lose this property precisely because a Dedekind domain
is locally a DVR, a very special PID.

Corollary 2.15 (“To contain is to divide”) Let A be a Dedekind domain and let a and b be
ideals. Then a ⊆ b if and only if b | a.

Proof. The reverse direction is quite straightforward and is indeed true in any commutative ring.
If b | a, then a = bc for some ideal c. So any element a ∈ a is of the form

∑n
i=1 bici for some

bi ∈ b, ci ∈ c, and n ∈ Z≥1. Since
∑n

i=1 bici ∈ b, it follows a ⊆ b.

Now suppose a ⊆ b. Let the prime ideal factorizations of a and b be

a = pr11 pr22 . . . p
rm
m , b = ps11 ps22 . . . psmm ,

for distinct prime ideals pi and some ri, si ∈ Z≥0. Then we have to show that si ≤ ri for all i.
Localising to Api , we see

aApi = prii Api = qrii and bApi = psii Api = qsii .

Since a ⊆ b, it follows qrii ⊆ qsii , and so si ≤ ri. �

Another interesting application of unique factorization of ideals is the following. Since, by
definition, Dedekind domains are Noetherian, it isn’t too much of a surprise but still a very
handy fact to have.

Corollary 2.16 Let A be a Dedekind domain. Then every nonzero ideal of A can be generated
by two elements of A.

Proof. Let a be a nonzero ideal of A. Fix a nonzero α ∈ a. Let the prime ideal factorizations of
a and (α) be

a = pr11 pr22 . . . p
rk
k and (α) = ps11 ps22 . . . pskk ,

with distinct prime ideals pi and ri, si ∈ Z≥0. Since α ∈ a, (α) ⊆ a and so by “to contain is to
divide”, ri ≤ si for all i. We want to construct a β ∈ A such that (α) + (β) = a. This implies
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that the smallest ideal containing α and β is a, and so the prime ideal factorization of (β) has the
form

(β) = pr11 pr22 . . . p
rk
k q1q2 . . . ql,

for some prime ideals qi distinct from the pi’s. In fact, note that any principal ideal having
the above form of prime ideal factorization will work. With this in mind, for each i fix a
βi ∈ prii \ p

ri+1
i . Then, since by the Chinese Remainder theorem

A/pr1+1
1 pr2+1

2 . . . prk+1
k
∼= A/pr1+1

1 × A/pr2+1
2 × · · · × A/prk+1

k ,

there exists β ∈ A such that β 7→ (β1 + pr1+1
1 , β2 + pr2+1

1 , . . . , βk + prk+1
1 ). So, by construction

β ∈ prii \ p
ri+1
i for all i, and hence β has the required prime ideal factorization (“to contain is to

divide”!). Thus a = (α, β). �

Now, we come to the proof that OK is a Dedekind domain. We prove the more general:

Theorem 2.17 LetA be a Dedekind domain with field of fractions F having characteristic 0 and
let K be a finite extension of F . Let B be the integral closure of A in K. Then B is a Dedekind
domain.

So taking A = Z, F = Q, K = number field, B = OK , we will have shown OK is a Dedekind
domain.

Proof.

• B is integrally closed: We can check by an argument virtually same as that of Proposition
2.5, that K is the field of fractions of B. So let C be the integral closure of B in K; we
have to show C = B. If we can show that C is also integral over A, then we would have
that C ⊆ B, and since B ⊆ C, we would have C = B. Let α ∈ C. Then we have

αn + bn−1α
n−1 + · · ·+ b0 = 0,

for some bi ∈ B. Let B′ = A[bn−1, bn−2, . . . , b0]. By Lemma 1.14, B′ is finitely generated
as an A-module. Since α is integral over B′, again by Lemma 1.14, B′[α] is finitely
generated as a B′-module and hence as an A-module too (cf. proof of 1.14). Since,
α ·B′[α] ⊆ B′[α], by Lemma 1.15, α is integral over A. Hence α ∈ B, and so C ⊆ B.

• B is Noetherian: The key idea is to show B is contained in a finitely generated A-module
M . Suppose we have shown this. Then by Proposition 1.18, M is a Noetherian A-module.
Therefore, since every ideal a of B can be viewed as an A-module (remember A ⊆ B), a
is an A-submodule of M and is hence finitely generated; this would show B is Noetherian.

Since [K : F ] is finite, fix a basis β1, . . . , βm for K over F . By Proposition 2.5, we can
find a d ∈ A such that dβ1, . . . , dβm ∈ B, and these elements also form a basis for K;
therefore to begin with assume the βi’s belong to B. From our discussion after Proposition
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1.10, we can also fix a “dual basis” β′1, . . . , β
′
m for K over F such that Tr(βiβ′j) = δij . We

argue that
B ⊆ Aβ′1 + Aβ′2 + · · ·+ Aβ′m.

For an element b ∈ B, we can write β = b1β
′
1 + · · ·+ bmβ

′
m such that bi ∈ F . We have to

show that in fact bi ∈ A. Now, by Proposition 2.4, we know that Tr(bβi) ∈ A, but

Tr(bβi) =
m∑
j=1

bjTr(β
′
jβi) =

m∑
j=1

bjδji = bi.

This shows B is Noetherian too.

• Every nonzero prime ideal is maximal: Suppose q is a nonzero prime ideal of B. Then
p = q ∩ A has to also be prime. Also, there exists a nonzero b ∈ q. By Proposition 2.4
Nm(b) ∈ q∩A = p and by Proposition 1.10 Nm(b) 6= 0, showing that p is nonzero. Since
A is a Dedekind domain, p must be maximal and so A/p is a field. Since p ⊆ q, we can
embed A/p into the integral domain B/q via

a mod p 7→ a mod q,

so that B/q contains a field over which it is algebraic (since B is integral over A). By
Lemma 1.9, B/q is therefore a field, and hence q is maximal.

�
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